1.2. Алканы: Способы получения

Получение и химические свойства алканов

Получение алканов

Рассмотрим получение и химические свойства алканов. В промышленности основным исходным сырьем для получения алканов служат такие природные источники как нефть и природный газ. Нефть – сложный природный объект, основную массу которого составляют углеводороды (УВ) трех гомологических рядов – алканы, циклоалканы и арены, однако наиболее широко представлены углеводороды смешанного гибридного строения. В составе различных фракций нефти содержатся алканы с числом углеродных атомов от 5 до 30. На 95% природный газ состоит из метана, остальные 5% — примесью этана и пропана.

Алканы выделяют из сырья путем фракционной перегонки, основанной на разности температур кипения. Однако выделение чистых индивидуальных алканов является сложным процессом, поэтому чаще всего получают их смеси. Другим способом их получения является крекинг — термическое разложение углеводородов, в результате которого в углеводородной цепи соединений с более высокой молекулярной массой происходит разрыв углерод-углеродной связи с образованием соединений с более низкой молекулярной массой.

Различают термический крекинг и каталитический крекинг.

Термический крекинг был открыт русским инженером В.Г. Шуховым в 1891 г. Термический крекинг проводят при температуре 450–700 o С. При этом происходит разрыва С–С связей высококипящих алканов с образованием более низкокипящих алканов и алкенов:

При температуре более 1000°С происходит разрыв как С–С связей, так и более прочных С–Н связей.

Каталитический крекинг осуществляется при температуре 500°С, атмосферном давлении в присутствии катализаторов (чаще всего оксидов алюминия и кремния). В этом случае разрыв связей молекул сопровождается реакциями изомеризации и дегидрирования.

Синтетические методы получения алканов

1.Гидрирование ненасыщенных углеводородов.

Реакцию осуществляют в присутствии катализаторов (Ni, Pd) при нагревании:

2.Дегалогенирование моногалогенпроизводных алканов.

В присутствии металлического натрия нагревание моногалогензамещенных алканов приводит к образованию алканов с удвоенным числом атомов углерода (реакция Вюрца):

3.Сплавление безводных солей карбоновых кислот с щелочами. При получаются алканы, содержащие на один атом углерода меньше по сравнению с углеродной цепью исходных карбоновых кислот (реакция Дюма):

4.Получение смеси алканов из синтез-газа (СО + Н2):

5.Электролиз раствора солей карбоновых кислот (синтез Кольбе).

При электролизе солей карбоновых кислот на аноде выделятся соответствующий алкан и углекислый газ, на катоде — водород и щелочь

Получение метана

1. Действие на раскаленную медь смеси сероводорода и сероуглерода:

2. Нагревание до 1200 градусов смеси водорода и углерода (а в присутствии никелевого катализатора до 475 градусов):

Та же самая реакция протекает в горящей в атмосфере водорода электрической дуге.

3. Взаимодействие карбида алюминия с водой:

4. Нагревание смеси щелочи и ацетата натрия:

5. Взаимодействие водорода и оксида углерода (II):

Химические свойства алканов

Алканы ввиду насыщенности связей при нормальных условиях являются инертными веществами (их еще называют «химические мертвецы»). Они не способны вступать в реакции восстановления, при комнатной температуре не окисляются даже под действием таких сильных окислителей как К2Cr2O7, KMnO4 и т.п. Однако в определенных условиях они могут вступать в реакции окисления (горения), дегидрирования, дегидроциклизации, изомеризации, разложения (крекинг), замещения.

1.Реакция дегидрирования (протекает при повышенной температуре в присутствии катализаторов Pt, Pd, Ni, Fe, Cr2O3, Fe2O3, ZnO):

2СН4 → CH≡CH+ H2 (катализатор — С, 1500°С)

2.Реакция дегидроциклизации (протекает при повышенной температуре в присутствии катализаторов):

3.Реакция изомеризации (протекает при повышенной температуре в присутствии катализатора):

Читайте также:
1.1. Алканы: Строение, номенклатура, изомерия

4.Крекинг (нагрев до высоких температур без доступа воздуха):

5.Окисление:

Неполное окисление алканов используют для получения карбоновых кислот, кетонов, альдегидов, спиртов:

бутан уксусная кислота

Действие кислорода воздуха в присутствии солей марганца на алканы с числом атомов углерода в цепи более 25 приводит к образованию смеси карбоновых кислот, среднее число атомов углерода в цепи которых составляет 12-18.

Полное окисление алканов (горение) –это экзотермическая реакция, которая сопровождается разрывом всех С-С и С-Н связей:

Низшие алканы (метан, этан, пропан, бутан) – легко воспламеняются, увеличение углеродной цепи алканов ведет к затруднению их горения, что объясняется недостатком кислорода воздуха, необходимого для полного окисления всего углерода. При этом происходит горение с образованием копоти, угарного газа.

6.Реакция образования «синтез-газа»:

СН4 + H2O → CO + 3H2 (катализатор — Ni, 800°С)

7. Реакция замещения (SR)

Замещение атома водорода происходит по радикальному механизму. Вначале преимущественно замещается третичный атом углерода, затем вторичный и первичный.

  • Реакция галогенирования алканов возможна только при действии света или высокой температуры. При этом образуются галогеналканы:

Реакция продолжается до тех пор, пока не израсходуется один из реагентов. При большом количестве галогена в результате реакции образуется смесь продуктов замещения 2-х, 3-х и т.д. атомов водорода

  • Реакция нитрования алканов (реакция Коновалова) протекает при действии разбавленной азотной кислоты:

  • Реакция сульфохлорирования

Способы получения алканов

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

Хлорэтан взаимодействует с натрием с образованием бутана:

Реакция больше подходит для получения симметричных алканов.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

2. Водный или кислотный гидролиз карбида алюминия

Этот способ получения используется в лаборатории.

3. Электролиз солей карбоновых кислот (электролиз по Кольбе )

Это электролиз водных растворов солей карбоновых кислот.

2R–COONa + 2H2O H2 + 2NaOH + 2CO2 + R–R

В водном растворе ацетат натрия практически полностью диссоциирует:

CH3COONa CH3COO – + Na +

При этом на катод притягиваются катионы натрия Na + и молекулы воды H2O.

Разряжаться на катоде будут молекулы воды:

Kатод (-): 2H2O + 2e = H2 + 2OH –

На аноде окисляются ацетат-ионы, а именно, атом углерода карбоксильной группы.

При этом от карбоксильной группы отрывается углекислый газ и остаются метильные радикалы, которые образуют газообразный этан:

Aнод (+): 2CH3COO – – 2e = 2CO2 + CH3–CH3

Суммарное уравнение электролиза водного раствора ацетата натрия:

4. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии ацетата натрия с гидроксидом натрия при сплавлении образуется метан и карбонат натрия:

5. Гидрирование алкеноа, алкинов, циклоалканов, алкадиенов.

При гидрировании этилена образуется этан:

При полном гидрировании ацетилена также образуется этан:

При гидрировании циклопропана образуется пропан:

6. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

7. В промышленности алканы получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Читайте также:
9.3. Фенол: Химические свойства

Алканы

Органическая химия

Мы приступаем к новому разделу – органической химии. Совершенно необязательно (и даже преступно по отношению к собственному времени!) знать наизусть, зубрить свойства органических веществ.

По мере изучения вы поймете, что свойства вещества определяются его строением, и научитесь легко предсказывать ход реакций ;)

В этой связи особый интерес представляет теория химического строения, которая была создана А.М. Бутлеровым в 1861 году. Она включает в себя несколько основных положений:

  • Атомы в молекуле соединены в определенной последовательности, в соответствии с их валентностью. Порядок связи атомов отражает химическое строение.
  • Зная свойства веществ, можно установить их химическое строение, и наоборот, зная строение вещества можно сделать вывод о его свойствах.
  • Атомы или группы атомов оказывают взаимное влияние друг на друга непосредственно или через другие атомы
  • Свойства вещества зависят от количественного и качественного состава, а также от химического строения молекулы

Алканы (парафины) – насыщенные углеводороды, имеющие линейное или разветвленное строение, содержащие только простые связи. Относятся к алифатическим углеводородам, так как не содержат ароматических связей.

Алканы являются насыщенными соединениями – содержат максимально возможное число атомов водорода. Общая формула их гомологического ряда – CnH2n+2.

Номенклатура алканов

Номенклатура (от лат. nomen – имя + calare – созывать) – совокупность названий индивидуальных химических веществ, а также правила составления этих названий. Названия у алканов формируются путем добавления суффикса “ан”: метан, этан, пропан, бутан и т.д.

Гомологами называют вещества, сходные по строению и свойствам, отличающиеся на одну или более групп CH2

Перечисленные выше алканы, являются по отношению друг к другу гомологами, то есть составляют один гомологический ряд (греч. homólogos – соответственный).

Названия алканов формируются по нескольким правилам. Если вы знаете их, можете пропустить этот пункт, однако я должен познакомить читателя с ними. Итак, алгоритм составления названий следующий:

  • В структурной формуле вещества необходимо выбрать самую длинную (пусть и изогнутую на рисунке!) цепь атомов углерода
  • Атомы выбранной цепи нумеруют, начиная с того конца, к которому ближе разветвление (радикал)
  • В начале название перечисляют радикалы и другие заместители с указанием номеров атомов углерода, с которыми они связаны. Если в молекуле имеется несколько одинаковых радикалов, то цифрой указывают нахождение каждого из них в главной цепи и перед их названием соответственно ставят частицы ди-, три-, тетра- и т.д.
  • Основой названия служит наименование предельного углеводорода с тем же количеством атомов углерода, что и в главной цепи

Внимательно изучите составленные для различных веществ названия ниже.

В углеводородной цепочке различают несколько типов атомов углерода, в зависимости от того, с каким числом других атомов углерода соединен данный атом. Различают первичные, вторичные, третичные и четвертичные атомы углерода.

Изомерами (греч. isomeros – составленный из равных частей) называют вещества, имеющие одну молекулярную формулу, но отличающиеся по строению (структурная изомерия) или расположению атомов в пространстве (пространственная изомерия).

Изомерия бывает структурной (межклассовая, углеродного скелета, положения функциональной группы или связи) и пространственной (геометрической, оптической). По мере изучения классов органических веществ вы узнаете о всех этих видах.

В молекулах алканов отсутствуют функциональные группы, кратные связи. Для алканов возможна изомерия только углеродного скелета. Так у пентана C5H12 существует 3 структурных изомера.

Читайте также:
1.4. Алканы: Решение цепочек

Некоторые данные, касающиеся алканов, надо выучить:

  • В молекулах алканов присутствуют одиночные сигма-связи (σ-связи), длина которых составляет 0,154 нм
  • Тип гибридизации атомов углерода – sp 3
  • Валентный угол (между химическими связями) составляет 109°28′

Природный газ и нефть

Алканы входят в состав природного газа: метан 80-97%, этан 0.5-4%, пропан 0.2-1.5% , бутан 0.1-1%, пентан 0-1%. Состав нефти нельзя выразить одной формулой, он непостоянен и зависит от месторождения.

В состав нефти входят алканы с длинными углеродными цепочками, например: C8H18, C12H26. Путем крекинга из нефти получают алканы.

Получение алканов

В промышленности алканы получают путем:

    Крекинга нефти

В ходе крекинга нефти получается один алкан и один алкен.

Гидрогенизацией угля (торфа, сланца)

Гидрированием оксида углерода II

В лабораторных условиях алканы получают следующими способами:

    Синтез Дюма

Данный синтез заключается в сплавлении соли карбоновой кислоты с щелочью, в результате образуется алкан.

Эта реакция заключается во взаимодействии галогеналкана с металлическим натрием, калием или литием. В результате происходит удвоение углеводородного радикала, рост цепи осуществляется зеркально: в том месте, где находился атом галогена.

В ходе синтеза Гриньяра с помощью реактива Гриньяра (алкилмагнийгалогенида) получают различные органические соединения, в том числе несимметричные (в отличие от реакции Вюрца).

На схеме выше мы сначала получили реактив Гриньяра, а потом использовали его для синтеза. Однако можно записать получение реактива Гриньяра и сам синтез в одну реакцию, как показано на примерах ниже.

В результате электролиза солей карбоновых кислот может происходить образование алканов.

В результате разложения карбида алюминия образуется метан и гидроксид алюминия.

Гидрированием ненасыщенных углеводородов

Химические свойства алканов

Алканы – насыщенные углеводороды, не вступают в реакции гидрирования (присоединения водорода), гидратации (присоединения воды). Для алканов характерны реакции замещения, а не присоединения.

    Галогенирование

Атом галогена замещает атом водорода в молекуле алкана. Запомните, что легче всего идет замещение у третичного атома углерода, чуть труднее – у вторичного и значительно труднее – у первичного.

Реакции с хлором на свету происходят по свободнорадикальному механизму. На свету молекула хлора распадается на свободные радикалы, которые и осуществляют атаку на молекулу углеводорода.

Реакция Коновалова заключается в нитровании алифатических (а также ароматических) соединений разбавленной азотной кислотой. Реакция идет при повышенном давлении, по свободнорадикальному механизму.

Для удобства и более глубокого понимания, азотную кислоту – HNO3 – можно представить как HO-NO2.

Все органические вещества, в их числе алканы, сгорают с образованием углекислого газа и воды.

В ходе каталитического, управляемого окисления, возможна остановка на стадии спирта, альдегида, кислоты.

Пиролиз (греч. πῦρ – огонь + λύσις – разложение) – термическое разложение неорганических и органических соединений. Принципиальное отличие пиролиза от горения – в отсутствии кислорода.

В реакциях, по итогам которых образуются изомеры, используется характерный катализатор AlCl3.

Вам уже известно, что в результате крекинга образуется один алкан и один алкен. Это не только способ получения алканов, но и их химическое свойство.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также:
10.3. Альдегиды и кетоны: Химические свойства

Алканы: свойства, получение и применение

Урок 10. Химия 10 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Алканы: свойства, получение и применение”

Предельные углеводороды – алканы, при обычных условиях достаточно инертны. Для них свойственны реакции замещения атомов водорода и реакции расщепления. Эти реакции требуют жёстких условий: нагревания, действия света, наличия катализаторов. Поэтому алканы ещё называют парафинами, что означает мало сродства.

Для алканов характерны реакции окисления. При полном окислении, например, метана образуется углекислый газ, вода и выделяется большое количество теплоты.

По этой причине метан в составе природного газа используют в качестве топлива в домах, на электростанциях, горючего для машин.

Смеси метана с кислородом (1 : 2 по объёму или воздухом 1 : 10) опасны и приводят к взрывам.

При частичном окислении, например, при недостатке кислорода, образуется оксид углерода (II) и вода.

При частичном окислении бутана в присутствии катализаторов образуется уксусная кислота.

Для алканов свойственны реакции замещения (галогенирования). Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов.

С фтором реакция идёт со взрывом, с йодом алканы не взаимодействуют, а с хлором и бромом в присутствии инициаторов.

В реакции метана с хлором на свету на первой стадии образуется хлорметан. Хлорметан представляет собой газ, легко сжижается, он применяется в холодильных установках.

На второй стадии образуется дихлорметан. Это растворитель, его используют для склеивания пластика.

На третьей стадии хлорирования метана образуется трихлорметан. Трихлорметан – бесцветная летучая жидкость с эфирным запахом, используется при производстве фреонового хладагента, в качестве растворителя в фармакологии, для производства красителей и пестицидов.

На четвёртой стадии образуется тетрахлорметан, который применяют как растворитель, а также для получения фреонов, как экстрагент в медицине, тетрахлорметан применялся как наполнитель для переносных огнетушителей в советской бронетехнике.

При нагревании алканов до 140 0 C с разбавленной (10 %) HNO3 под давлением идёт реакция нитрирования, то есть замещения атома водорода нитрогруппой. Эту реакцию называют ещё реакцией М. Н. Коновалова. В результате реакции метана с азотной кислотой образуется нитрометан.

При температуре более 500 0 C в присутствии катализаторов алканы подвергаются расщеплению, то есть крекингу. Это приводит к образованию смеси алкенов и алканов.

При температуре 1000 осуществляется пиролиз, при этом разрываются все связи.

Таким образом, получают технический углерод – пигмент для изготовления типографической краски и наполнителя резины для автомобильных шин.

При повышенных температурах алканы образуют, главным образом, непредельные углеводороды. Например, в реакции дегидрирования метана при температуре 1500 0 C образуется ацетилен и водород, в реакции дегидрирования этана образуется этен и водород.

Под влиянием катализаторов и при температуре углеводороды нормального строения подвергаются изомеризации с образование углеводородов разветвлённого строения. Так, в присутствии катализатора хлорида алюминия происходит изомеризация бутана с образованием изобутана.

Читайте также:
12.1. Амины: Строение, номенклатура, изомерия

При конверсии метана образуется синтез-газ, который представляет собой смесь угарного газа с водородом.

Рассмотрим получение алканов.

В промышленности насыщенные углеводороды – алканы получают при переработке нефти.

В лаборатории алканы можно получить различными способами. Например, из солей карбоновых кислот при нагревании с твёрдыми щелочами.

Реакция Вюрца используется для увеличения углеводородной цепи.

Алканы также можно получить гидрированием ненасыщенных углеводородов.

Алканы имеют широкое применение. Бутан используется для получения бутадиена-1,3, необходимого в производстве синтетического каучука. Метан используется для получения синтез-газа, метанола, ацетилена, как топливо, горючее для двигателей внутреннего сгорания, для получения растворителей.

Таким образом, при облучении светом или при высоких температурах алканы вступают в реакции окисления и замещения. Алканы в промышленности получают из нефти, а в лаборатории реакциями гидрирования ненасыщенных углеводородов, нагреванием солей карбоновых кислот со щелочами, реакцией Вюрца.

1.2. Алканы: Способы получения

Алканы выделяют из природных источников (природный и попутный газ, нефть, каменный уголь).

Газообразные алканы получают из природного и попутных нефтяных газов, а твердые алканы — из нефти. Природной смесью твердых высокомолекулярных алканов является горный воск — природный битум.

Метан широко распространен в природе. Он является главной составной частью многих горючих газов как природных (80-97%), так и искусственных, выделяющихся при сухой перегонке дерева, торфа, каменного угля, а также при крекинге нефти. Природные газы, особенно попутные газы нефтяных месторождений, помимо метана содержат этан, пропан, бутан и пентан.

Метан выделяется со дня болот и из каменноугольных пластов в рудниках, где он образуется при медленном разложении растительных остатков без доступа воздуха. Поэтому метан часто называют болотным или рудничным газом.

В промышленности

1. Получение алканов из природных источников (нефть, природный газ)

2. Синтезом на основе водяного газа из оксида углерода (II) и водорода можно получить метан:

3. Синтезом из водяного газа (СО+Н2) получают смесь алканов:

В лаборатории

1. Метан можно получить синтезом из простых веществ при нагревании, повышенном давлении в присутствии катализатора (Ni):

2. Гидролиз карбида алюминия (получение метана)

3. Взаимодействие карбида алюминия с сильными кислотами

4. Сплавление солей уксусной кислоты со щелочами (реакция Дюма)Видеоопыт “Получение метана”

5. Каталитическое гидрирование (+Н2) непредельных углеводородов

6. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Происходит димеризация углеродной цепи исходного галогеналкана, образуется алкан с четным числом атомов углерода в цепи:

Если в реакции участвуют разные галогеналканы, то образуется смесь алканов:

7. Электролиз растворов солей карбоновых кислот (реакция Кольбе)

Алканы — номенклатура, получение, химические свойства

Алканы — углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле CnH2n +2 .
В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды — тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н-пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи. Связи углерод — углерод являются неполярными и плохо поляризуемыми. Длина С—С связи в алканах равна 0,154 нм (1,54 • 10 — 10 м). Связи С—Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С—Н является слабополярной.

Читайте также:
4.3. Алкадиены (диены): Химические свойства

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи — вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН2.

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, — это бутан.

Основы номенклатуры

1. Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (—СН3), затем этил (-СН2-СН3), пропил (-СН2-СН2-СН3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия. В начале названия указывают цифры — номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди — два, три — три, тетра — четыре, пента — пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов — название главной цепи. Главная цепь называется как углеводород — член гомологического ряда метана ( метан СН4, этан С2Н6, пропан C3H8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан C7H16, октан C8H18, нонан С9Н20, декан С10Н22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана — газы. Простейший из них — метан — газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов — серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С4Н12 до С15Н32 — жидкости; более тяжелые углеводороды — твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Читайте также:
5.1. Циклоалканы: Строение, изомерия

Химические свойства алканов

Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения характерных реакций галогенирования:

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода).
В ходе пропускания алканов над катализатором (Pt, Ni, А123, Сг23) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

Реакции, сопровождающиеся разрушением углеродной цепи.
Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов — это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в основе промышленного процесса — крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

3. Пиролиз. При нагревании метана до температуры 1000 °С начинается пиролиз метана — разложение на простые вещества:

При нагревании до температуры 1500 °С возможно образование ацетилена:

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С—С (углерод — углерод) связей и слабополярных С—Н (углерод — водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Распространение углеводородов

Углеводороды содержатся везде: от недр земли до атмосфер других планет. Например, в атмосферах Юпитера, Сатурна, Урана и Нептуна присутствует метан. Помимо планет, углеводороды содержатся в других космических объектах, например в хвостах комет и метеоритах.

Алканы

Алканы – это углеводороды, в которых все связи одинарные. Также их называют предельными (или насыщенными) углеводородами.

Все атомы углерода находятся в sp 3 -гибридизации.

Чтобы указать элементарный состав алканов, используют общую формулу: CnH2n+2 .

Читайте также:
1.3. Алканы: Химические свойства

Для примера рассмотрим, каким образом можно записать несколько элементарных формул, в которых 1,2 и 3 атомов углерода.

Пользуясь выражением CnH2n+2, запишем:

Рисунок 1 – Гибридизация алканов

Следует заметить, что у алканов наблюдается структурная изомерия:

Номенклатура алканов

Номенклатура – это правило, по которому даются названия органическим веществам.

Для того, чтобы назвать молекулу органического вещества, необходимо учесть длину углеродной цепи, наличие кратных связей в молекуле, количество заместителей и их состав, а также наличие функциональных групп.

Заместители могут быть представлены атомами галогенов (хлор, бром, иод, фтор) или углеводородной частицей, которую называют «радикалом».

Понятие радикала

Радикал – углеводородная частица, в которой 1 из атомов углерода содержит 1 неспаренный электрон. Этот неспаренный электрон может образовать связь с углеродной цепочкой, функциональной группой или другим атомом. Для записи радикала используют символ: R, и в общем случае называют алкилом.

Название радикала зависит от количества атомов углерода в нем, для каждого из которых был предложен собственный корень. К корню добавляется суффикс –ил, тем самым образуя полное название радикала.

В таблице 1 представлено, какие корни используются для названия веществ, содержащих конкретное число атомов в углеродной цепочке.

Таблица 1. – Названия углеводородных заместителей

Для названия ряда алканов используется тот же метод, только вместо суффикса –ил, ставится суффикс –ан.

Представленный ряд веществ одного класса соединений называется гомологическим рядом (в нем каждый последующий элемент, называемый гомологом, отличается от предыдущего на 1 группу СН2).

Алгоритм названия алканов с заместителями

Чтобы назвать алкан, у которого есть один или несколько заместителей, следует придерживаться следующего алгоритма:

  1. Выбирается самый длинный участок углеродного скелета, и нумеруются атомы углерода.
  2. Нумерация, в соответствии с правилом, начинается с того конца, к которому заместитель ближе.Называть молекулу начинают с номера атома углерода, у которого стоит заместитель и его названия. Если одинаковых заместителей несколько, то сначала через запятые указываются номера атомов углерода, при которых стоит этот заместитель, а затем через дефис записывается число заместителя и его название. Числа записывают так, как указано в таблице 2.
  3. В соответствии с числом пронумерованных атомов углерода выбирается корень названия радикала.
  4. К концу корня приписывается суффикс –ан.

Таблица 2. – число и его запись при перечислении заместителей

Для примера назовем молекулу алкана в соответствии с алгоритмом.

Допустим, есть молекула, которая имеет вид:

  1. Находим самую длинную цепь и нумеруем атомы углерода в ней.
  1. Видим, что в молекуле есть заместители, смотрим: какие они и у каких атомов стоят. Видно, что у 2 и 8 атома стоят метил-радикалы, а у 5 атома – пропил-радикал.Записываем начало названия молекулы: 2,8-диметил-5-пропил.
  2. Теперь необходимо поставить корень и суффикс названия. Корень зависит от числа атомов углерода в цепочке. Здесь их 9, поэтому корень нон-. Так как у нас алкан, то суффикс – -ан.
  3. Запишем полное название:2,8-диметил-5-пропилнонан.

Галоген производные алканов

Галогенпроизводные алканов (их еще называют алкилгалонегидами) – вещества, у которых есть заместитель в виде атома галогена.

Более строгое понятие: алкилгалогенид – это углеводород, у которого 1 или более атомов водорода замещен на атом галогена.

Номенклатура галогенпроизводных алканов такая же, как и у алканов, только в качестве заместителя нужно указывать название галогена.

Например, названия веществ А и Б:2,3-дихлорбутан и 2-метил-3-хлорбутан.

Физические свойства алканов

Свойства алканов зависят от их структурного строения и количества атомов углерода в углеродном скелете. С их увеличением, агрегатное состояние меняется от газообразного до жидкого и твердого, а так же увеличивается плотность и температуры кипения и плавления, что отображено по таблицам ниже.

Читайте также:
11.1. Карбоновые кислоты: Строение, номенклатура, изомерия

Рассмотрим физические свойства алканов.

По агрегатным состояниям алканы могут быть газами, жидкостями и твердыми веществами. Это зависит от длины углеродного скелета.

Следует отметить, что алканы хорошо растворимы в органических растворителях (например, в четыреххлористом углероде) и нерастворимы в воде. Алканы, имеющие строение разветвленного типа, обладают низкими температурами кипения, в отличие от линейных алканов.

Таблица температуры кипения алканов

Получение алканов

Некоторые алканы можно добывать напрямую из недр земли попутно с добычей нефти. В основном, так добывают метан. Недостаток этого способа – наличие загрязнений в газе, от которых довольно сложно избавиться, и к тому же для такой добычи нужно строить трубопроводы и другие установки для транспортировки.

Поэтому были предложены иные методы, которые позволили получать различные алканы с помощью химических реакций из других химических соединений.

Химические реакции способов получения алканов

Запомним, что в органической химии реакции записываются таким образом, чтобы слева были исходные органические компоненты, а справа продукт, который необходимо получить.

В отличие от неорганической химии, знак равенства между правой и левой частью уравнения не ставится, а заменяется стрелками. Это связано с тем, что в органической химии важно именно то, из какого вещества получился целевой продукт, при этом не так важно мольное соотношение компонентов. Коэффициенты можно встретить в случаях, когда, например, из 2 или 3 одинаковых молекул образуется одна новая.

Над стрелкой указываются условия, при которых происходит конкретная реакция. Это может быть температура, давление, неорганическое вещество или катализатор. Под стрелкой, со знаком «минус», указывается выделившийся побочный продукт химической реакции.

Теперь рассмотрим конкретно, с помощью каких реакций получают алканы.

  1. Реакции гидрирования алкенов:

Уточним, что гидрирование – это реакция присоединения органическим веществом водорода. Обычно, он присоединяется по кратной связи.

  1. Реакция Вюрца. Некоторые реакции являются именными, т.е. им присвоено имя ученого, который первым их предложил. При получении алканов данным методом в качестве реагента используется алкилгалогенид (т.е. органическое вещество, содержащее хлор, бром или иод в качестве заместителя). Реакция проводится под действием металлического натрия и при повышенной температуре. Побочным продуктом выделяется NaCl, и образуется алкан вида R-R:
  1. Реакция восстановления галогенпроизводных алканов. Для получения алканов таким способом используется алкилгалогенид, который взаимодействует на железном катализаторе при высоких температурах с водородом. В результате этой реакции атом галогена в алкилгалогениде замещается на атом водорода. Побочным продуктом выделяется галогенводородная кислота.
  1. Реакция Дюма. При взаимодействии твердой соли карбоновой кислоты с твердой щелочью при нагревании выделяется газообразный алкан. В качестве побочного продукта образуется карбонат щелочного металла. Вспомним, что щелочные металлы – К, Na, Li, а газообразные алканы имеют в своем составе от 1 до 4 атомов углерода.
  1. Реакция электролиза. При проведении электрического тока через раствор соли карбоновой кислоты, выделяется алкан, и в качестве побочных продуктов образуются щелочь, углекислый газ и водород.
  1. Реакция Гриньяра. Для синтеза алканов таким способом используются определенные вещества, называемые реактивами Гриньяра, которое представляет собой радикал, соединенный с MgCl-группой. Реактив Гриньяра взаимодействует с алкилгалогенидом, в результате образуется алкан, длина цепи которого равна сумме атомов углерода у реактива Гриньяра и алкилгалогенида.
Читайте также:
4.1. Алкадиены (диены): Строение, номенклатура, изомерия

Определенные методы синтеза метана

Метан, в отличие от других алканов, можно получать и другими реакциями, которые рассмотрим ниже.

  1. Гидролиз карбида алюминия. Если чистый карбид алюминия опустить в воду, то начнет протекать необратимая реакция, в результате выделяется газообразный метан и образуется осадок гидроксида алюминия.
  1. Гидрирование углерода. Чистый углерод напрямую взаимодействует с водородом, но для этого необходимы условия: повышенная температура и использование катализатора из металлического никеля.
  1. Термокаталитическое восстановление оксидов углерода. Аналогично чистому углероду и при таких же условиях, его оксиды взаимодействуют с водородом, и также в результате реакции образуется метан. Побочным продуктом будет выделяться вода.

Химические реакции алканов

Алканы могут вступать в 2 типа химических реакций: замещения и разложения. Это вызвано тем, что алканы – насыщенные углеводороды и присоединить к себе другие вещества не могут, поскольку все связи заняты.

Рассмотрим химические свойства алканов реакциями, представленными ниже.

Реакции замещения

  1. Галогенирование. Реакция присоединения галогена (хлора, брома, иода), называется галогенированием. В результате данной реакции образуется алкилгалогенид и побочный продукт – галогенводородная кислота.
  1. Реакция Коновалова. При взаимодействии алкана с 10% раствором азотной кислоты образуется нитро-алкан и вода в качестве побочного продукта. Реакция проходит при повышенной температуре.

Реакции разложения

  1. Реакция полного горения. Под полным горением подразумевается, что вещество горит в избытке кислорода. При таком взаимодействии образуется углекислый газ и вода.
  1. Реакция неполного горения. Под неполным горением подразумевается, что вещество горит при недостатке кислорода. В результате такой реакции образуется угарный газ и вода.
  1. Реакция полного дегидрирования. Дегидрирование – реакция разложения, в результате которой выделяется газообразный водород. Эта реакция характерна для алканов, которые по своему агрегатному состоянию являются газами. Реакция проходит под воздействием высоких температур. При полном дегидрировании выделяется чистый углерод (в виде сажи) и газообразный водород.
  1. Реакция неполного дегидрирования. Под воздействием окислителя оксида хрома (III) при высокой температуре алкан превращается в алкен.
  1. Реакция крекинга. Крекинг – разложение углеводородов с большим числом атомов в углеродом скелете при высоких температурах и давлениях. Обычно, в результате крекинга образуется целая смесь газообразных углеводородов с меньшим количеством атомов углерода в цепочке.

Реакции окисления

  1. Реакции окисления метана. Под воздействием различных катализаторов метан может превращаться в метиловый спирт, формальдегид или метановую кислоту, о которых будет рассказано на последующих уроках. Катализатор в общем виде обозначается, как kat.

Применение алканов

Алканы используют в качестве топлива. Например, газовые плиты в квартирах работают при сжигании метана.

Из них делают резины и типографических краски, а так же получают синтетический бензин.

Как было рассмотрено выше, алканы являются сырьем для производства других органических соединений, т.е. участвуют в цепочке органического синтеза.

Также алканы используют для получения парафиновых свечей и веществ, позволяющих поддерживать холод в морозильных камерах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: