10.1. Альдегиды и кетоны: Строение, номенклатура, изомерия

Альдегиды и кетоны — номенклатура, получение, химические свойства

Строение альдегидов и кетонов

Альдегиды – органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой.
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π-связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2.

Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

Читайте также:
9.1. Фенол: Строение, номенклатура

2. Реакции окисления. Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

Получение альдегидов и кетонов

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H2C=O:
а) для получение фенолформальдегидных смол;
б) получение мочевино-формальдегидных (карбамидных) смол;
в) полиоксиметиленовые полимеры;
г) синтез лекарственных средств (уротропин);
д) дезинфицирующее средство;
е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН3СН=О:
а) производство уксусной кислоты;
б) органический синтез.

Ацетон СН3-СО-СН3:
а) растворитель лаков, красок, ацетатов целлюлозы;
б) сырье для синтеза различных органических веществ.

Изомерия, строение и гомологический ряд альдегидов и кетонов

К кислородсодержащим производным углеводородов, содержащим в молекуле функциональную группу , относятся альдегиды и кетоны. Отличаясь друг от друга по ряду свойств, эти вещества характеризуются заметным сходством. Изомерия альдегидов и кетонов также имеет общие черты, обусловленные близостью строения.

Строение альдегидов и кетонов

Определяющий элемент структуры производных углеводородов – функциональная группа атомов. Она служит критерием для отнесения соединения к тому или иному классу органических веществ.

Карбонильная группа

Группа называется карбонилом. Она образована посредством двойной связи, поскольку оба входящих в ее состав атома – углерод и кислород – sp2-гибридизованы.

В карбонильной группе атом углерода затрачивает на -связь одну из трех валентностей, образованных гибридными sp2-облаками, и на -связь – валентность, создаваемую единственным негибридным 2p-облаком. Кислородный атом вступает в -связь с углеродом, затрачивая единственную свободную гибридную орбиталь, и в -связь – через 2p-орбиталь аналогично углероду. Два оставшихся гибридных облака кислорода содержат неподеленные электронные пары и не создают свободных валентностей.

Благодаря высокой электроотрицательности кислород оттягивает в свою сторону электронную плотность по обоим компонентам двойной связи, и она оказывается сильно поляризованной. За счет -электронов, обладающих большой подвижностью и легко смещающихся к кислороду, дипольный момент связи C=O почти вчетверо выше, чем у одинарной связи С-O, характерной для спиртов.

На диполе C=O кислород обладает частичным отрицательным, а углерод – положительным зарядом. Это приводит к поляризации связей С-O у соседнего с карбонилом углеродного атома (отрицательный индуктивный, или I-эффект) и оказывает влияние на химические свойства.

Общая структура молекул альдегидов и кетонов

Состав карбонильных соединений описывается общей формулой . Различия между альдегидами и кетонами состоят в разном строении углеводородных остатков.

В альдегидах одна из свободных валентностей углерода группы присоединяет алкильный радикал, а вторая – атом водорода. В кетонах обе валентности связывают карбонил с алкильными остатками. Общее строение молекул соединений обоих классов имеет следующий вид:

Читайте также:
7.4. Спирты: Химические свойства

Номенклатура

Наименования альдегидов строятся путем прибавления суффикса «-аль» либо «-диаль» к названию углеводорода, представляющего алкильный остаток. Нумерацию цепи начинают от углеродного атома, входящего в состав карбонила, но в наименовании локант «1» не указывается:

Если радикал -CHO (альдегидная группа) присоединяется непосредственно к одному из атомов углеродной цепи, он считается равноправным с другими альдегидными группами. В этом случае группы -CHO получают наименование «карбальдегид», не участвуют в нумерации и указываются после названия углеводорода:

Наименования кетонов составляются путем добавления суффикса «-он» либо «-дион» к названию образующего главную цепочку углеводорода:

Гомологические ряды альдегидов и кетонов

Ряды, образуемые насыщенными карбонильными соединениями, представлены в таблице:

Изомерия кетонов и альдегидов

Соединения состава образуют изомеры по структурным признакам: строению образующей молекулу углеродной цепи, местоположению карбонильных групп и наличию изомеров в других классах органических веществ.

Позиция функциональной группы

Изомерия данного типа свойственна кетонам с :

Строение углеродного скелета

Изомерия по отсутствию либо наличию и характеру ветвления углеродной цепи свойственна всем карбонильным соединениям: альдегидам с и кетонам с . Ацетальдегид и формальдегид изомеров не имеют.

Например, альдегиды состава образуют изомеры:

Межклассовая изомерия

Из единой для двух классов соединений общей формулы следует, что альдегиды и кетоны одинакового атомного состава – взаимные изомеры:

Кроме того, они обладают межклассовой изомерией с такими соединениями, как:

  • непредельные спирты – алкенолы (при );
  • простые эфиры (при );
  • циклические оксиды (при ).

Физические свойства

Формальдегид и уксусный альдегид в стандартных условиях – токсичные газы с резким запахом. Альдегиды и кетоны с C3 по C12– жидкости.

Поскольку в группе отсутствует поляризованный водород, молекулы не могут быть ассоциированы посредством водородных связей, и жидкие карбонильные соединения более летучи, чем соответствующие спирты. Однако они растворяются в воде за счет взаимодействия кислорода карбонильной группы и поляризованных водородных атомов молекулы воды.

Химические свойства

Химические свойства альдегидов и кетонов определяются в первую очередь группой , благодаря которой эти вещества химически активны. При этом альдегиды отличаются большей реакционной способностью, чем кетоны.

1. Присоединение к карбонилу по месту двойной связи

Синильная кислота присоединяются по нуклеофильному механизму:

Аналогично протекают реакции присоединения солей и спиртов.

При восстановлении (гидрировании) присоединение водорода идет на катализаторе:

2. Окисление

К действию окислителей альдегиды и кетоны относятся различно. Альдегиды охотно вступают в реакцию и в мягких условиях благодаря наличию водорода при карбонильной группе, которая окисляется до карбоксильной. Продукт реакции – кислота:

Альдегиды дают качественные реакции при окислении свежеприготовленным гидроксидом меди или реактивом Толленса (оксид серебра в аммиачном растворе):

Кетоны ведут себя подобно третичным спиртам и не реагируют со слабыми окислителями. Под действием сильных окислителей происходит распад молекулы кетона.

Карбонильные соединения горят с выделением тепла по схеме:

3. Реакции в алкильном радикале

Карбонил оказывает влияние на реакционную активность углеводородного остатка, сообщая особую подвижность водородным атомам, стоящим при α-расположенном (соседнем с группой ) углероде. Этот водород легко подвергается замещению, например, галогеном:

Читайте также:
8.1. Многоатомные спирты (этиленгликоль, глицерин): Номенклатура, физические свойства

Получение альдегидов и кетонов

  1. Окисление и дегидрирование спиртов
  2. Гидролиз дигалогенпроизводных
  3. Гидратация алкинов
  4. Дегидрирование спиртов. Процесс протекает на катализаторе (оксид меди) с нагреванием:

Применение карбонильных соединений

Благодаря высокой реакционной активности соединения, содержащие карбонил, широко используются в различных сферах.

Формальдегид лидирует по объемам мирового производства. Он применяется в фармацевтике, производстве полиуретанов, смол, взрывчатых веществ. Используется в качестве консерванта биопрепаратов и в сельском хозяйстве для обработки зерна.

Уксусный альдегид – основа для получения этанола, уксусной кислоты, бутадиена и других востребованных промышленностью веществ.

Альдегиды играют значительную роль в синтезе спиртов и карбоновых кислот, душистых веществ и антиоксидантов.

Ацетон – один из самых распространенных органических растворителей, компонент лаков, красок, клеев. Используется в производстве различных реактивов.

Бутанон (метилэтилкетон) и другие низшие кетоны также являются эффективными растворителями и находят применение в химической промышленности, например, в производстве полимерных материалов.

Строение, изомерия и номенклатура альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Строение карбонильных соединений

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует три σ-связи и одну π-связь.

Одна из σ–связей – связь С–О, все три σ–связи расположены в одной плоскости под углом 120 о друг к другу.

π-Связь образована р-электронами атомов углерода и кислорода.

Из-за большей электроотрицательности атома кислорода по сравнению с атомом углерода связь С=О сильно поляризована, электронная плотность смещена к более электроотрицательному атому кислорода.

На атоме кислорода возникает частичный отрицательный (δ – ), а на атоме углерода – частичный положительный (δ + ) заряды.

Номенклатура карбонильных соединений

  • По систематической номенклатуре к названию углеводорода добавляют суффикс «-АЛЬ».

Нумерация ведется от атома углерода карбонильной группы.

Например, 2-метилпропаналь

  • К названию кетонов добавляют в название суффикс «-ОН». После этого добавляют номер атомов углерода карбонильной группы.
Например, пентанон-2

  • Тривиальные названия альдегидов и кетонов приведены в таблице.

Изомерия карбонильных соединений

Изомерия альдегидов

Для альдегидов характерна структурная изомерия – изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомерия углеродного скелета характерна для альдегидов, которые содержат не менее четырех атомов углерода.

Например. Ф ормуле С4Н8О соответствуют два альдегида-изомера углеродного скелета
Бутаналь 2-Метилпропаналь

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Альдегиды являются межклассовыми изомерами с кетонами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для альдегидов, которые содержат не менее трех атомов углерода.

Читайте также:
7.2. Спирты: Строение, физические свойства
Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Изомерия кетонов

Для кетонов характерна изомерия углеродного скелета, изомерия положения карбонильной группы и межклассовая изомерия.

Изомерия углеродного скелета характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют кетоны-изомеры углеродного скелета
Пентанон-2 3-Метилбутанон-2

Изомерия положения карбонильной группы характерна для кетонов, которые содержат не менее пяти атомов углерода.

Например. Ф ормуле С5Н10О соответствуют два кетона-изомера углеродного скелета
Пентанон-2 Пентанон-3

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Кетоны являются межклассовыми изомерами с альдегидами, непредельными спиртами и непредельными простыми эфирами, содержащими одну двойную связь в молекуле. Общая формула этих классов органических соединений — CnH2nО.

Межклассовая изомерия характерна для кетонов, которые содержат не менее трех атомов углерода.

Например. Межклассовые изомеры с общей формулой С3Н6О: пропаналь СН3–CH2–CHO и ацетон CH3–СO–CH3
Пропаналь Ацетон (пропанон)

Физические свойства альдегидов и кетонов

Все альдегиды и кетоны, кроме формальдегида – жидкости. Лёгкие альдегиды хорошо растворимы в воде из-за водородных связей, которые они образуют с водой.

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Альдегиды и кетоны: гомологический ряд, номенклатура и изомерия, применение

Урок 25. Химия 10 класс (ФГОС)

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Альдегиды и кетоны: гомологический ряд, номенклатура и изомерия, применение”

Карбонильными соединениями, или оксосоединениями являются органические соединения, в которых есть карбонильная группа – С = О (оксогруппа).

К карбонильным соединениям относятся альдегиды и кетоны.

Альдегиды – это органические соединения, в которых карбонильная группа связана с атомами водорода или углеводородным заместителем. Поэтому общая формула альдегидов R – CHO, где R – алкильная группа. Функциональную группу у альдегидов называют альдегидной. Для альдегидов используют её общую формулу CnH2n+1CHO, для отражения молекулярного состава можно использовать и формулу CnH2nO.

Многие альдегиды распространены в природе. Так, в миндале обнаружен бензальдегид и его производные. В корице встречается коричный альдегид, или 3-фенилпропеналь, в стручках ванили есть пахучее вещество ванилин. Бензальдегид встречается в листьях лавровишен, косточках персиков, абрикосов, слив.

Кетоны – это органические соединения, в которых карбонильная группа соединена с двумя радикалами. Поэтому общая формула кетонов R – CO – R`, где R, R` – алкильные группы.

В зависимости от природы углеводородного радикала альдегиды и кетоны могут быть предельными, непредельными или ароматическими. Непредельные альдегиды и кетоны содержат кратные связи в цепи. Ароматические альдегиды содержат альдегидную группу, связанную с ароматическим радикалом (например, бензойный альдегид – С6Н5 – СОН).

Читайте также:
11.2. Карбоновые кислоты: Способы получения

Ароматические кетоны содержат карбонильную группу, связанную с двумя радикалами, из которых один или оба являются ароматическими (например, дифенилкетон – С6Н5 – С (О) – С6Н5).

Рассмотрим строение карбонильной группы. Между атомом углерода и кислорода двойная связь. Атом углерода находится в состоянии sр 2 — гибридизации и образует три σ-связи, они расположены в одной плоскости под углом 120, а π-связь между атомом углерода и кислорода образована при перекрывании 2р-орбиталей атомов углерода и кислорода. Атом кислорода при двойной связи оттягивает на себя электронную плотность, за счёт чего атом кислорода приобретает частичный отрицательный заряд, а атом кислорода – частичный положительный заряд. Связь С = O является полярной. Эта связь короче, чем – С = С –, но энергия С = О связи больше.

По правилам номенклатуры ИЮПАК названия альдегидов образуются от названий соответствующих алканов с добавлением суффикса –аль-. Например, НСНО – метаналь, СН3СНО – этаналь. При названии альдегидов с разветвлённой структурой нумерацию цепи начинают с атома углерода, который находится в составе альдегидной группы.

Назовём следующие альдегиды.

Первый альдегид называется 3,4-диметилпентаналь. Второй – 4-метил-3-этилгексаналь.

Для альдегидов характерны и тривиальные названия, так альдегид НСНО называется формальдегид, или муравьиный альдегид, СН3СНО – уксусный альдегид, СН3СН2СНО – пропионовый альдегид.

Кетоны часто называют по наименованию радикалов, связанных с карбонильной группой. По международной номенклатуре к названию углеводорода добавляют окончания «-он». Нумерацию начинают с конца цепи, где ближе карбонильная группа.

Изомерия альдегидов обусловлена изомерией углеродной цепи. Первые три представителя альдегидов изомеров не имеют. Составим всевозможные изомеры к альдегиду, состава С5Н10О. Первый альдегид – это пентаналь, второй – 2-метилбутаналь, третий – 3-метилбутаналь, четвёртый – 2, 2-диметилпропаналь.

Изомерия кетонов обусловлена изомерией углеродной цепи и положением карбонильной группы в углеродной цепи. Первые четыре представителя кетонов изомеров не имеют. Составим изомеры к кетону состава С5Н10О.

Формальдегид используется для различных синтезов. Обладает токсичностью для микроорганизмов и применяется как дезинфицирующее средство. Используется в кожевенной промышленности, для хранения медицинских препаратов. Формальдегид используют для получения фенолформальдегидных пластмасс, синтетического каучука и лекарственных средств (уротропина).

Ацетальдегид используется для получения уксусной кислоты, этилацетата, «сухого спирта» и этилового спирта.

Бензальдегид используется для получения душистых и лекарственных веществ, некоторых красителей.

Пропеналь используется для получения пластмасс, глицерина, акриловой кислоты, лекарственных средств.

Ацетон применяется как растворитель для лаков, кинопленки, для получения искусственного ацетатного волокна, ацетилена, а также во многих синтезах. Кетоны используют в пищевой промышленности, фармацевтической промышленности, для производства бездымного пороха.

Таким образом, общая формула альдегидов и кетонов CnH2nO, названия альдегидов образуются от названий соответствующих алканов с добавлением суффикса -аль-, а при названии кетонов – суффикса -он-. Для альдегидов характерна изомерия углеродного скелета, межклассовая с кетонами. Для кетонов характерна изомерия углеродного скелета и положения карбонильной группы, а также межклассовая с альдегидами. Альдегиды и кетоны имеют широкое применение в природе и промышленности.

Читайте также:
Разбор демо-варианта ЕГЭ-2018 по химии, вопросы 1-6

Альдегиды

Альдегиды – летучие жидкости органического состава, являющиеся продуктом неполного окисления спиртов. Карбонильная группа в молекулах альдегидов связана с одним атомом водорода и одной группой R.

Не часто встречаются в природе в отдельном виде, но, несомненно, играют важную роль в физиологических процессах растений и животных. Общая формула альдегидов CnH2nO.

Многие альдегиды имеют специфический запах. Высшие альдегиды, в особенности непредельные, используются в пищевой промышленности и парфюмерии.

Номенклатура и изомерия альдегидов

Названия альдегидов формируются путем добавления суффикса “аль” к названию алкана с соответствующим числом атомов углерода: метаналь, этаналь, пропаналь, бутаналь, пентаналь и т.д.

Вы можете встретить их молекулярные формулы, где группа OH записана наоборот – HO. Например: метаналь – HCHO, этаналь – CH3CHO, пропаналь – C2H5CHO. Это делают специально для того, чтобы их было легче отличить от спиртов.

Многие альдегиды имеют тривиальные названия. Наиболее известные: метаналь – формальдегид, этаналь – ацетальдегид. Замечу, что формалином называется 40% раствор формальдегида.

Для альдегидов характерна структурная изомерия: углеродного скелета, межклассовая изомерия с кетонами.

Получение альдегидов и кетонов
  • Окисление спиртов

Важно заметить, что при окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов – кетоны. Окисление с помощью оксида меди относится к лабораторным способам получения альдегидов.

Этот способ также просто осуществить в лабораторных условиях. При пиролизе (нагревании без доступа кислорода) кальциевых или бариевых солей карбоновых кислот возможно получение кетонов.

В присутствии катализатора и при нагревании спиртов от гидроксогруппы и прилежащего к ней атома углерода отщепляется по атому водорода. В результате образуется карбонильная группа.

Реакцией Кучерова называют гидратацию алкинов в присутствии солей двухвалентной ртути.

В результате такой реакции ацетилен превращается в уксусный альдегид. Все остальные его гомологи: пропин, бутин, пентин и т.д. превращаются в соответствующие кетоны.

Для получения альдегида два атома галогена должны находиться у первичного атома углерода, для получения кетонов – у вторичного.

В результате такого гидролиза образуются двухатомные спирты, в которых две OH-группы прилежат к одному атому углерода. Такие соединения неустойчивы и распадаются на карбонильное соединение (альдегид или кетон) и воду.

В промышленности окислением метана при температуре 500 °C и в присутствии катализатора получают формальдегид.

В прошлой теме, посвященной фенолам, мы касались данного способа. В результате такой реакции образуется не только фенол, но и ацетон.

Химические свойства альдегидов и кетонов

Запомните, что для альдегидов и кетонов характерны реакции присоединения по карбонильной группе. Это является важным отличием альдегидов от карбоновых кислот, для которых реакции присоединения не характерны.

Для понимания механизма реакции важно вспомнить об электроотрицательности. В карбонильной группе кислорд, как более электроотрицательный элемент, тянет электронную плотность на себя от углерода. На атоме кислорода возникает частичный отрицательный заряд (δ-), а на атоме углерода частичный положительный (δ+).

Основы школьного курса физики подсказывают, что отрицательный заряд притягивает положительный: именно так и будет происходить при присоединении различных молекул к карбонильной группе альдегидов и кетонов.

Читайте также:
7.1. Спирты: Номенклатура, классификация, изомерия

Реакция гидрирования альдегидов происходит по типу присоединения, сопровождается разрывом двойной связи в карбонильной группе. Гидрирование альдегидов приводит к образованию первичных, а гидрирование кетонов – вторичных спиртов.

В результате полного окисления, горения, образуется углекислый газ и вода.

Альдегиды легко окисляются до карбоновых кислот в лабораторных условиях. Это осуществляется с помощью известной реакции серебряного зеркала. Данная реакция является качественной для альдегидов.

Кетоны, в отличие от альдегидов, в реакции окисления не вступают.

Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли

Важно заметить, что при окислении метаналя, образовавшаяся муравьиная кислота тут же окисляется до угольной кислоты, которая распадается на углекислый газ и воду. Это связано с интересным фактом – наличием альдегидной группы у муравьиной кислоты.

Окисление также возможно другим реагентом – гидроксидом меди II. Эта реакция также относится к качественным для альдегидов, в результате образуется кирпично-красный осадок оксида меди I.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Приятный цветочный запах духов, аромат ванильных булочек, корицы и фруктов кроются в альдегидах и кетонах. Жидкость для снятия лака и строительные растворители также производят из карбонильных соединений. Без альдегидов и кетонов невозможно представить жизнь человека.

Карбонильные соединения – молекулы, содержащие карбонильную группу С=О. Они состоят из двух классов– альдегидов (R-CHO) и кетонов (R-CO-R’).

Общая формула гомологического ряд карбонильных соединений: CnH2nO.

Строение альдегидов и кетонов

Для карбонильных (входящих в состав функциональной группы альдегидов или кетонов)углеродных атомов характерна sp 2 -гибридизация. Все σ-связи располагаются под углом 120˚.

Кислородный атом более электроотрицателен, поэтому связь С=О поляризована. Он стягивает на себя электронную плотность, поэтому на кислороде образуется частично отрицательный заряд δ – , а на углероде из функциональной группы – частично положительный заряд δ + .

Классификация альдегидов и кетонов

В классификации заключено отличительное строение молекулы. В основе одной из классификаций лежит строение радикала.

Также альдегиды и кетоны можно классифицировать по количеству карбонильных групп.

Номенклатура альдегидов и кетонов

В соответствии с систематической номенклатурой в альдегидах добавляется суффикс «-аль» (например, метанАЛЬ), а в кетонах –«-он» (например, метанОН).

Алгоритм составления названия

  • Нахождение главной углеродной цепи.
  • Нумерация главной цепи, начиная с углеродного атома функциональной группы.
  • Название углеводородного радикала.
  • Если в молекуле присутствует альдегидная группа, то к названию прибавляется суффикс -аль. Если в соединении есть одна кетонная группа, то к названию прибавляется суффикс -он, а есть кетонных группы две, то к названию прибавляется суффикс -дион.
Читайте также:
6.3. Ароматические углеводороды (бензол и его гомологи): Химические свойства

Гомологический ряд альдегидов и кетонов

Ряд альдегидов начинается с соединения с одним углеродным атомом – с метаналя. Он содержится во многих природных объектах, например, в деревьях. Характерный запах новой мебели – это запах метаналя, который при больших концентрациях опасен для здоровья человека и животных.

Гомологический ряд кетонов начинается с пропанона. Это соединение широко известен как хороший растворитель. Ацетон характеризуется резким характерным запахом.

Изомерия карбонильных соединений

Для карбонильных соединений свойственна как структурная, так и пространственная изомерия. Пространственная изомерия включает оптическую и цис-транс. Оптическая изомерия возможна при наличии ассиметричного атома углерода в молекуле, а цис-транс-изомерия – при наличии кратной связи.

Оптическая изомерия альдегида.

Структурная изомерия альдегидов

Структурная изомерия кетонов

Способы получения альдегидов и кетонов

Карбонильные соединения можно получить несколькими способами.

Окисление спиртов

Окисление протекает при нагревании. Альдегиды получают с помощью реакций окисления первичных спиртов, а кетоны – вторичных.

Дегидрирование спиртов

Реакция заключается в пропускании спиртовых паров над медью.

Взаимодействие алкинов с водой, или реакция Кучерова

Для проведения реакции необходим катализатор в виде соли ртути (II).

Гидролиз дигалогенпроизводных алканов

В ходе щелочного гидролиза образуется диол, содержащий две гидроксильные группы –ОН у одного атома углерода. Эта структура неустойчива, поэтому быстро образуется в альдегид или кетон.

Пиролиз солей карбоновых кислот

Для проведения данной реакции необходимо нагревание и наличие двухвалентных металлов. В результате образуются кетоны и карбонаты.

Кумольный метод получения пропанона

В промышленности пропанон, или более известный как ацетон, получают с помощью каталитического окисления кумола. Синтез пропанона проходит в два этапа.

Физические свойства альдегидов и кетонов

У соединений этого класса атомы не могут формировать водородные связи. Эта особенность отражается в низких температурах плавления и кипения, по сравнению со спиртами. У кетонов температура плавления и кипения немного выше, чем у альдегидов.

Существование в виде характерно только для формальдегида. Альдегиды с двумя-пятью и кетоны с тремя-четырьмя углеродными атомами – жидкости. Агрегатное состояние высших соединений – твердое. Низшие карбонильные молекулы растворимы в воде, а по мере увеличения углеродной цепи эта способность падает. Все альдегиды и кетоны хорошо растворимы в органических растворителях.

Особенность представителей класса заключается в особенных ароматах. Низшие альдегиды и кетоны отличаются резким запахом, средние имеют неприятный запах, а высшие обладают цветочными ароматами. Альдегиды опасны при вдыхании, т.к. поражают слизистые, а также оказывают негативное влияние на нервную систему.

Формальдегид – опасный для здоровья бесцветный газ. Его можно отличить по резкому запаху. Формальдегид относится к группе веществ раздражающего или слезоточивого действия. Водный раствор 40-% формальдегида – формалин, который обладает дезинфицирующим эффектом и используется для хранения биологических объектов.

Читайте также:
11.3. Карбоновые кислоты и их соли: Химические свойства

Ацетальдегид – бесцветная жидкость с низкой температурой кипения в 21˚С. Обладает запахом зеленой листвы. Негативно влияет на организм человека и животных.

Некоторые альдегиды люди используют как источник витаминов. Например, в пиродоксале содержится витамин В6.

Некоторые насекомые в качестве защиты используют сильные запахи, в состав которых входят альдегиды. Эти соединения оказывают раздражающее действие.

Химические свойства альдегидов и кетонов

Реакции определяются наличием группы С=О, которая создает активное вещество. Для альдегидов свойственна большая реакционная способность по сравнению с кетонами.

Реакции присоединения

Данные реакции проходят по двойной связи.

  • Взаимодействие с водородом

Гидрирование альдегидов приводит к образованию первичных спиртов, а кетонов – вторичных.

  • Взаимодействие с водой

Гидратация возможна только для формальдегида и уксусного альдегида. В результате гидратации формальдегида синтезируется гидратная форма, которая существует только при низких температурах.

  • Присоединение спиртов

При взаимодействии спиртов и альдегидов образуются полуацетали, которые существуют только при низких температурах. Реакции протекает при участии катализатора – кислоты или щелочи.

При реакции полуацеталя с еще одной молекулы спирта в присутствии протона Н + полуацетальный гидроксил замещается на алкоксильную группу и образуется ацеталь.

  • Присоединение циановодородной кислоты

Окисление

Альдегиды легко поддаются окислению. Кетоны окисляются только при участии сильных окислителей и при высоких температурах.

  • Окисление гидроксидом меди (II)

Для данной реакции требуется свежеприготовленный гидроксид меди (II). Характерная черта реакции – образование краснокирпичного осадка оксида меди (I)Cu2O.

  • Окисление аммиачным раствором оксида серебра

Особенность данной реакции заключается в том, что на стенках пробирки образуется небольшой слой металлического серебра («серебряное зеркало»).

Упрощенная форма уравнения:

  • Жесткое окисление

Окислителями могут быть перманганаты и соединения хрома (VI).

Кетоны подвергаются окислению только под действием перманганатов и дихроматов при нагревании.

  • Горение (полное окисление)

Реакции замещения

При взаимодействии с галогенами образуется галогензамещенный (у ближайшего к функциональной группе атома углерода) альдегид или кетон.

Поликонденсация

Формальдегид может реагировать с фенолом при наличии катализатора – кислоты или щелочи.

Полимеризация

Реакция полимеризации возможна для легких альдегидов.

Применение альдегидов и кетонов

Карбонильные соединения широко применяются во многих отраслях. Им характерна высокая реакционная активность.

Формальдегид применяется для получения пластмасс, формальдегидных смол, а также в производстве лекарств и продуктов органического синтеза и в обработке кож в кожевенной промышленности. При взаимодействии формальдегида и аммиака образуется уротропин – мочегонный препарат. Иногда прессованный уротропин используют как сухое горючее.

Ацетальдегид используется в получении уксусной кислоты, уксусного ангидрида, этилацетата и др.

Ацетон применяется в лакокрасочной промышленности, в производстве ацетатного шелка, пироксилина (бездымного пороха), киноплёнки.

Метаналь в основном используют для получения формальдегидной смолы, которая применяется в производстве пластмасс, клея, лаков.

Ванилин – альдегид, который используют в пищевой промышленности (в особенности при изготовлении выпечки) и парфюмерии. Он имеет характерный сладкий запах.

Цитраль – альдегид с цитрусовым ароматом. Его применяют в качестве отдушки моющих средств и косметики. Цитраль также входит в состав организмов муравьев. Он используется в медицине для понижения давления, а также для изготовления препаратов улучшающих зрение, антисептиков и антибактериальных средств.

Читайте также:
3.1. Алкины: Строение, номенклатура, изомерия

Бензальдегид содержится в эфирных маслах и обладает запахом горького миндаля. Он в виде гликозида содержится в семенах миндаля, косточках вишни, абрикоса и персика.

§ 19. Альдегиды и кетоны

Строение альдегидов и кетонов

Общая формула альдегидов имеет вид

В простейшем альдегиде — формальдегиде — роль углеводородного радикала играет атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Общая формула кетонов имеет вид

Карбонильную группу кетонов называют кетогруппой.

В простейшем кетоне — ацетоне — карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия

В зависимости от строения углеводородного радикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды.

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль . Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поскольку эта функциональная группа всегда располагается на конце углеродной цепи, альдегидный атом углерода получает номер 1 и указывать цифрой положение этой группы в названии вещества нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов (табл. 6). Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя (см. табл. 6), а для кетонов

также и изомерия положения карбонильной группы (запишите структурные формулы изомеров пентанона и назовите их). Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов и кетонов

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислорода по сравнению с углеродным атомом связь С = 0 сильно поляризована за счёт смещения электронной плотности π -связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов (см. табл. 6). Это связано с тем, что в молекулах альдегидов и кетонов, в отличие от спиртов, нет подвижных атомов водорода и они не образуют ассоциатов за счёт водородных связей. Низшие альдегиды имеют резкий запах. У альдегидов, содержащих от четырёх до шести атомов углерода в цепи, неприятный запах. Высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства предельных альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: