Арены – определение, общая формула, свойства, применение

Бензол и его гомологи

Арены – ароматические углеводороды, содержащие одно или несколько бензольных колец. Бензольное кольцо составляют 6 атомов углерода, между которыми чередуются двойные и одинарные связи.

Важно заметить, что двойные связи в молекуле бензола не фиксированы, а постоянно перемещаются по кругу.

Арены также называют ароматическими углеводородами. Первый член гомологического ряда – бензол – C6H6. Общая формула их гомологического ряда – CnH2n-6.

Долгое время структурная формула бензола оставалась тайной. Предложенная Кекуле формула с тремя двойными связями не могла объяснить то, что бензол не вступает в реакции присоединения. Как уже было сказано выше, по современным представлениям двойные связи в молекуле бензола постоянно перемещаются, поэтому более верно рисовать их в виде кольца.

За счет чередования двойных связей в молекуле бензола формируется сопряжение. Все атомы углерода находятся в состоянии sp 2 гибридизации. Валентный угол – 120°.

Номенклатура и изомерия аренов

Названия аренов формируются путем добавления названий заместителей к главной цепи – бензольному кольцу: бензол, метилбензол (толуол), этилбензол, пропилбензол и т.д. Заместители, как обычно, перечисляются в алфавитном порядке. Если в бензольном кольце несколько заместителей, то выбирают кратчайший путь между ними.

Для аренов характерна структурная изомерия, связанная с положением заместителей. Например, два заместителя в бензольном кольце могут располагаться в разных положениях.

Название положения заместителей в бензольном кольце формируется на основе их расположения относительно друг друга. Оно обозначается приставками орто-, мета- и пара. Ниже вы найдете мнемонические подсказки для их успешного запоминания ;)

Получение аренов

Арены получают несколькими способами:

    Реакция Зелинского (тримеризация ацетилена)

Данная реакция протекает при пропускании ацетилена над активированным углем при t = 400°C. В результате образуется ароматический углеводород – бензол.

В случае, если к ацетилену добавить пропин, то становится возможным получение толуола. Увеличивая долю пропина, в конечном итоге можно добиться образования 1,3,5-триметилбензола.

В ходе таких реакций, протекающих при повышенной температуре и в присутствии катализатора – Cr2O3, линейная структура алкана замыкается в цикл, отщепляется водород.

При дегидроциклизации гептана получается толуол.

В результате дегидрирования уже “готовых” циклов – циклоалканов, отщепляются 3 моль водорода, и образуется соответствующий арен, с теми же заместителями, которые были у циклоалкана.

Синтез Дюма заключается в сплавлении солей карбоновых кислот с щелочами. В результате такой реакции возможно образование различных органических веществ, в том числе аренов.

Химические свойства аренов

Арены – ароматические углеводороды, которые содержат бензольное кольцо с сопряженными двойными связями. Эта особенность делает реакции присоединения тяжело протекающими (и тем не менее возможными!)

Запомните, что, в отличие от других непредельных соединений, бензол и его гомологи не обесцвечивают бромную воду и раствор перманганата калия.

При повышенной температуре и наличии катализатора, водород способен разорвать двойные связи в бензольном кольце и превратить арен в циклоалкан.

Реакция бензола с хлором на свету приводит к образованию гексахлорциклогексана, если же использовать только катализатор, то образуется хлорбензол.

Реакции с толуолом протекают иначе: при УФ-свете хлор направляется в радикал метил и замещает атом водорода в нем, при действии катализатора хлор замещает один атом водорода в бензольном кольце (в орто- или пара-положении).

Почему хлор направляется именно в орто- и пара-положения относительно метильной группы? Здесь самое время коснуться темы ориентантов I (орто-, пара-ориентантов) и II порядков (мета-ориентанты).

К ориентантам первого порядка относятся группы: NH2, OH, OR, CR3, CHR2, CH2R, галогены. К ориентантам второго: NO2, CN, SO3H, CCl3, CHO, COOH, COOR.

Например, ориентант I порядка, гидроксогруппа OH, обеспечивает протекание хлорирования в орто- и пара-положениях. А карбоксильная группа COOH, ориентант II порядка, обуславливает хлорирование в мета-положениях.

Арены вступают в реакции нитрования, протекающие при повышенной температуре и в присутствии серной кислоты, обладающей водоотнимающими свойствами.

Читайте также:
Алканы - свойства, гомологический ряд, применение, номенклатура

Алкилирование аренов осуществляется путем введения алкильного радикала в молекулу бензола. Алкильным радикалом чаще всего выступает алкен или галогеналкан. В подобных реакциях используют катализатор AlCl3.

В случае если для алкилирования используется алкен, то с молекулой бензола соединяется наименее гидрированный атом углерода алкена, прилежащий к двойной связи. Один атом водорода переходит из бензольного кольца к радикалу.

Арены, как и все органические вещества, сгорают с образованием углекислого газа и воды.

При неполном окислении гомологи бензола способны окисляться до бензойной кислоты (при подкислении раствора серной кислотой). Сам бензол не вступает в реакцию окисления с KMnO4, не обесцвечивает его раствор.

В реакцию полимеризации способен вступать стирол (винилбензол), в радикале которого содержится двойная связь.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Арены – классификация, виды и особенности строения ароматических углеводородов

Особенности структуры

Термин «ароматический» присвоен классу до того, как был обнаружен физический механизм, определяющий ароматичность. Его придумали просто потому, что многие арены имеют сладкий запах. Бензольным кольцом называют конфигурацию из шести атомов углерода. Оно присуще почти всем представителям класса, которые могут быть моноциклическими и полициклическими.

Некоторые, не основанные на бензоле соединения, называемые гетероаренами, следуют правилу Хюккеля, также называются ароматическими. В них по меньшей мере один атом углерода заменён одним из гетероатомов кислорода, азотом или серой. Примером таких веществ является гетероциклическое соединение фуран с пятичленным кольцом и атомом кислорода. А также пиридин с шестичленным кольцом и азотом.

Простейшим представителем гомологического ряда аренов является бензол (С6Н6). Его структурный вид — это плоская молекула в форме правильного шестиугольника. В ней все углерод-углеродные связи имеют одинаковую длину. Молекулярное строение включает 6 p-электронов делокализованных выше и ниже плоскости кольца. Такая особенность делает бензол очень стабильным. Следующий — это метилбензол (толуол), у которого один из атомов водорода присоединён к кольцу и заменён метильной группой — С6Н5СР3. К характерным свойствам ароматических углеводородов относятся:

  • обладают ароматичностью;
  • все соединения имеют изомерию боковых цепей;
  • имеют высокое соотношение углерода и водорода;
  • легко горят;
  • подвергаются реакциям электрофильного и нуклеофильного ароматического замещения.

Реакция, которая образует соединения арена из полностью или частично ненасыщенного предшественника, называется просто — ароматизацией. Существует много лабораторных способов синтеза аренов. Например, ароматизация циклогексанов и других алифатических колец. В таких реакциях реагенты представляют собой катализаторы, используемые в гидрировании, такие как платина, палладий и никель. Для получения ареновых соединений в качестве сырья используют нефть и нефтепродукты.

Физические и химические свойства

Летучие ароматические углеводороды легко воспламеняются и горят ярким, коптящим пламенем, оставляя мало углеродного остатка. Помимо горения, выделяют следующие физические свойства аренов:

  1. Точка кипения. Поскольку на бензольной молекуле нет постоянного диполя, единственное притяжение между ними — дисперсионные силы Ван-дер-Ваальса. Бензол кипит при 80 °C, что значительно выше, чем у других углеводородов схожего молекулярного размера (например, пентана и гексана). Метилбензол кипит при 111 °C. Это большая молекула и она имеет постоянный диполь.
  2. Точка плавления. Бензол плавится при 5,5 °C, толуол при -95 °C. Молекулы должны эффективно упаковываться в твёрдом теле, если они хотят наилучшим образом использовать свои молекулярные силы. Метильная группа, торчащая в метилбензоле, имеет тенденцию нарушать плотность упаковки. Поэтому температура плавления у него ниже.
  3. Растворимость в воде. Арены таким свойством не обладают. Бензол довольно большой по сравнению с водной молекулой. Надо сказать, что для растворения бензольному соединению пришлось бы разорвать множество существующих водородных связей между частицами воды. При этом нужно ещё сломать дисперсионные силы. Оба этих занятия стоят большого количества энергии.
Читайте также:
Сероводород - формула вещества, строение, свойства, получение

Основными типами химических реакций с участием ароматических колец являются присоединение, окисление и замещение. Последняя — самая распространённая. Химические свойства аренов:

  1. Ароматическое замещение. Один заместитель в ареновом кольце, обычно водород, заменяется другим. Двумя основными типами являются электрофильное и нуклеофильное ароматическое замещение. А также нитрирование, например, салициловой кислотой, алкилирование и другие.
  2. Сочетание. Здесь металл катализирует связь между двумя фрагментами формального радикала. Обычно такие реакции с аренами приводят к образованию новых углерод-углеродных связей. Например, алкиларенов, виниларенов, биарилов, анилинов (углерод-азотные связи) или арилоксисоединений (углерод-кислород).
  3. Гидрирование. Эта реакция создаёт насыщенные кольца. Например, соединение резорцин, гидрированное никелем Ренея в присутствии одного гидроксида натрия, образует энолы, которые алкилируются йодистым метилом до 2-метил-1,3-циклогександиона.
  4. Присоединение. Реакция циклоприсоединения не распространена.
  5. Деароматизация. В органической химии представляет собой реакцию, при которой продукты утрачивают ароматичность. Здесь арены выступают реагентами.

Ароматические соединения обладают высокими показателями поглощения и преломления УФ и видимой части спектра.

Классификация и номенклатура

Многие производные бензола приобрели довольно тривиальные названия. Например, имя для C6H5 – фенил. Более сложные кольцевые системы, имеющие два и более бензольных кольца, имеют несистематические наименования и нелогичные системы нумерации. Они описаны как многоядерные ароматические углеводороды.

Три наиболее важных — нафталин, антрацен и фенантрен. Названия, которые были даны этим и другим сложным типам соединений, по большей части неинформативны в отношении их структур. Классификацию аренов можно представить в виде таблицы:

Системы π-связи, кол-во π-электронов Представители Пояснения
2 производные катиона (перхлорат циклопропенилия)
6 бензол и гомологичные соединения
дианион циклобутадиена
пирол, фуран и др.
циклопентадиен-анион
10 нафталин конденсированные бензольные кольца, широко встречающиеся в природе
азулен входит в состав эфирных масел
азонин
индол распространены в природе
пурин содержат атомы азота
14 фенантрен такие соединения называют полиценами
[14]-аннулен
от 15 и более кекулен
коронен антиароматичен, его π-электронная система 18 внешних и 6 внутренних электронов
18-аннулен

Если бензольное кольцо не может расположиться в плоскости, один его атом выводится из неё. При этом он сохраняет sp3-гибридизацию, а также не принимает участия в сопряжении. Такие соединения классифицируются как гомоароматичные.

Типичный представитель — трисгомоциклопропенильный катион. Ещё один вид — спироароматичные системы, которые подчиняются правилу Хюккеля. Примером служит [4,2]спирарен.

Области применения

Многие, возможно, и не слышали о бензоле и его производных, но скорее всего все сталкивались с продуктами, производимыми с ним каждый день. Пластмассы, моющие средства, пестициды и даже красители, используемые для окрашивания одежды, пищевых и фармацевтических продуктов, изготавливаются с применением бензольных соединений.

Молекулы производных бензола довольно универсальны и сегодня широко используются в промышленности. Первым стоит выделить этилбензол. Заменяет один из атомов водорода, присоединённых к кольцу, этильной группой. Естественным образом содержится в каменноугольной смоле и нефти. Из него производят чернила, пестициды, краски и другие химикаты. Однако основное применение этилбензола заключается в производстве стирола, а затем полистирола:

  1. Стирол. Используется для изготовления латекса и синтетического каучука. Можно посмотреть на нижнюю часть придверного коврика, который обычно есть в каждом доме. Его резиновая подложка, скорее всего, сделана из стирол-бутадиенового каучука – типа стирола. Он также используется для конвейерных лент, напольных покрытий, изоляции проводов и даже для резиновых обувных подошв.
  2. Полистирол. Изготовлен из стирола. Является распространённым материалом для производства упаковки для пищевых продуктов, одноразовых стаканчиков, контейнеров.

В какой-то момент большинство людей принимает аспирин для лечения головной боли, ушибов или снижения температуры. Этот препарат на самом деле сделан с применением фенола, ещё одним производным бензола. Он также используется в изготовлении пластмасс, взрывчатых веществ и красителей, используемых для одежды и пищевых продуктов (азокраситель). Сам фенол часто применяется в качестве антисептика и дезинфицирующего средства в бытовых чистящих составах, конечно, в низких концентрациях. Кстати, это соединение было одним из первых антисептических средств для, применённых в хирургии Джозефом Листером.

Ещё одним универсальным производным бензола является анилин. Используется для производства многих продуктов, как и предыдущие представители. Например, входит в состав ацетаминофена, или тиленола, другого безрецептурного обезболивающего средства. Применяется в процессах деревообработки. Все яркие элементы мебели изготовлены с его участием.

Толуол в настоящее время часто используется в качестве заменителя бензола, например, как присадка к топливу. Свойства обоих растворителей похожи, но этот менее токсичен и имеет более широкий диапазон содержания жидкости. Бензол также используют в качестве бензиновой добавки, он повышает октановое число и снижает детонацию.

Все ароматические соединения проявляют уникальные химические и физические свойства благодаря своей дополнительной стабильности. Применение аренов довольно масштабно и распространяется на многие отрасли промышленности. Например, фенантрен является промежуточным продуктом различных синтетических процессов для производства красителей, взрывчатых веществ и лекарств. Катехин (пирокатехол) — один из ключевых компонентов фотографического проявителя.

Влияние на человека

Ароматические углеводороды выделяются главным образом в результате антропогенных процессов, например, из-за неполного сгорания органического топлива. Их нахождению в окружающей среде способствуют такие природные явления, как извержение вулканов и лесные пожары. Арены присутствуют в окружающей среде в виде частиц или в газообразной форме, в зависимости от их летучести. В атмосфере эти соединения реагируют с другими загрязнителями, такими как диоксид серы, оксид азота и озон.

На людей воздействует смесь ароматических углеводородов в газообразной или дисперсной формах. Некоторые арены считаются канцерогенами, вдыхание которых несёт потенциальный риск для здоровья. Это связанно с возникновением рака лёгких. Основными источниками токсичных выбросов являются:

  1. Отопление и приготовление пищи путём сжигания и пиролиза угля, нефти, газа, мусора и древесины.
  2. Выбросы от промышленной деятельности. Например, при производстве первичного алюминия и кокса, резиновых шин и цемента, битума и асфальта, тепла и электроэнергии, сжигании отходов.
  3. Мобильные источники. Выхлопные газы от транспортных средств, включая автомобили, железные дороги, корабли, самолёты и другие.
  4. Сельское хозяйство. Ароматические соединения образуются в результате открытого сжигания биомассы.

Ароматические углеводороды могут попасть в организм человека в процессе дыхания, при употреблении пищи или воды, а также через кожные покровы. Они транспортируются во все органы и ткани, которые содержат жировые клетки.

При многократном длительном воздействии арены накапливаются в печени, почках, селезёнке и даже яичниках, вызывая рост раковых клеток. Помимо этого, соединения могут способствовать развитию сердечно-сосудистых заболеваний.

Ароматические углеводороды (Арены)

Формула и соединения

АРЕНЫ (АрУ)– карбоциклические соединения, содержащие в молекуле специфическую систему чередующихся двойных и одинарных связей (сопряженных π-связей).

Общая формула CnH2n-6

Ароматические углеводороды (Арены) являются ненасыщенными циклическими соединениями и представлены в нефтях следующими углеводородами:

  1. моноциклическими (бензольными) – СnНn;
  2. бициклическими (нафталиновыми) – СnНn-2;
  3. трициклическими (антраценовыми) – СnНn-4
  4. тетрациклическими (пиреновыми) – СnНn-6.

В основном все они представлены алкилпроизводными изомерами и содержатся во фракциях нефти в соответствии с их температурами кипения.

В среднем для нефтей характерно следующее соотношение этих групп углеводородов:

  • бензольные – 67%,
  • нафталиновые – 18%,
  • фенантреновые – 8%,
  • пиреновые – 5%,
  • прочие – 2%.

Строение

Основой названия ароматического углеводорода с небольшим заместителем является бензол. Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему по кратчайшему пути.

Строение аренонов представлено бензолом и его гомологами – продуктами замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Гомологи – вещества, относящиеся к одному классу соединений, имеющие сходные химические свойства и отличающиеся на одну или несколько СН2 групп.

Существуют также соединения, молекулы которых содержат несколько циклических структур:

Циклические молекулы

Изомеры

Для гомологов бензола характерна изомерия положения нескольких заместителей.

Изомеры

Свойства

Физические

К характерным свойствам следует отнести:

  1. высокую плотность (880 – 900 кг/м 3 ),
  2. большой показатель преломления (1,5 – 1,55)
  3. минимальное соотношение Н:С (5 – 8 %), т.е. низкие энергетические свойства.

Физические свойства ароматических углеводородов существенно зависят от числа, места и молекулярной массы боковых заместителей и числа циклов. Такое резкое отличие их свойств часто используют для разделения этих углеводородов физическими методами.

Бензол и его простейшие гомологи в обычных условиях – токсичные жидкости с характерным запахом. Они плохо растворяются в воде, но хорошо в органических растворителях.

Первые члены гомологического ряда бензола (например, толуол, этилбензол и др.) – бесцветные жидкости со специфическим запахом. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ.

Все арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Химические

Для аренов наиболее характерны реакции электрофильного замещения –

  • галогенирование,
  • нитрование,
  • сульфирование,
  • алкилирование (получение хлорбензола, нитробензола, этилбензола др. соединений).

При высоких парциальных давлениях водорода в присутствии катализаторов арены насыщаются до нафтенов.

Получение

Ароматические углеводороды нефтяного происхождения (содержащиеся в природной нефти и образующиеся во вторичных процессах термокаталитической переработки фракций нефти) являются основным исходным сырьем для огромного числа нефтехимических производств получения ценных продуктов.

Из общего производства аренов в мире 29 млн. т/г. (2005-е годы) 87-92% вырабатывалось из нефти.

Применение

Бензол в основном идет на производство этилбензола, из которого каталитическим дегидрированием при 600 °С получают стирол – исходный мономер для производства каучуков и ценных полимеров:

Для производства других ценных продуктов – фенола и ацетона пользуют кумол (изопропилбензол), который окисляют в пероксид, разложением которого кислотой получают фенол и ацетон.

Из кумола каталитическим дегидрированием получают такой ценный мономер для производства каучуков, как α-метилстирол.

Значение АрУ в нефтепродуктах различно. Так, в бензинах присутствие (до 30% масс.) желательно и необходимо, так как придает бензинам хорошие моторные свойства – повышает детонационную стойкость. С этой целью в товарные бензины часто добавляют толуол или ксилолы.

В авиационных керосинах содержание АрУ ограничивают (в зависимости от марки топлива) 10-20% масс. из-за их низкой теплоты сгорания и способности давать нагар в двигателе сгорании. Допустимое количество АрУ обусловлено необходимостью иметь авиакеросины с повышенной плотностью.

В дизельных топливах содержание АрУ ограничивают из-за их нагарообразующих свойств и плохой воспламеняемости является очень важной характеристикой этих топлив. В маслах высокомолекулярные и алкилсодержащие АрУ с боковыми цепями изомерного строения – нежелательный компонент, так как они ухудшают вязкостно-температурную характеристику масел (индекс вязкости) и обусловливают образование лаково-смолистых отложений на трущихся поверхностях. АрУ удаляют из масел в процессе очистки масляных дистиллятов и деасфальтизатов. Остаются в маслах лишь АрУ с длинными боковыми цепями и “гибридные” полициклические углеводороды, в которых преобладают насыщенные циклы, поскольку свойства углеводородов приближаются соответственно к свойствам алканов и цикланов.

Распределение по фракциям нефти

Распределение АрУ по фракциям нефтей зависит от степени ароматизированности нефти, выражающейся в ее плотности.

  • В легких нефтях, богатых алканами, АрУ представлены в основном легкими моно- и бициклическими, и их общее содержание максимально в начальных фракциях и снижается к более высококипящим.
  • В нефтях средней плотности, богатых нафтеновыми углеводородами, распределение АрУ более равномерно, а в тяжелых смолистых нефтях картина обратная: содержание АрУ в низкокипящих фракциях невелико и нарастает в высококипящих.
  • В бензиновых фракциях нефти (30-200 °С) содержатся в основном бензольные АрУ (С6-C9).
  • В керосиновых фракциях (150-300 °С) кроме бензольных присутствуют нафталиновые АрУ (С1016), а в тяжелых дистиллятных фракциях (350-500 °С) – главным образом нафталиновые и антраценовые.
  • В остатках нефти (выше 500 °С) концентрируются полицик­лические АрУ с числом циклов от трех до семи, причем “чистые” АрУ здесь уступают место “гибридным”, сочетающим в себе насыщенные и ненасыщенные циклы.

Простейшие из них (индан, тетралин, флуорен и другие би- и трициклические соединения) содержатся в керосино-газойлевых фракциях нефти (150 – 350 о С).

Гибридные соединения

В «гибридных» соединениях ароматические циклы имеют обычно метильные заместители, а нафтеновые – более длинные боковые цепи.

В остальных фракциях нефти (выше 500 о С) и особенно в составе смол и асфальтенов концентрируются полициклические АрУ с числом циклов 4 и более, такие как пирен, хризен, бенз-α-пирен и другие, являющиеся канцерогенными веществами.

Cодержание аренов в нефтях России

Общее содержание аренов в нефтях России (с учетом «гибридных») составляет 35 – 40 % – для тяжелых нафтено – ароматических нефтей и около 20 % – для высокопарафинистых.

Химия. 10 класс

Конспект урока

Химия, 10 класс

Урок № 4. Арены (ароматические углеводороды)

Перечень вопросов, рассматриваемых в теме: урок посвящён ароматическим углеводородам, их номенклатуре, физическим и химическим свойствам, а также роли в жизни человека.

Ароматический углеводород – соединение, содержащее в молекуле специфическую систему чередующихся одинарных и двойных связей (сопряженных π-связей).

Акцептор – атом или группа атомов, принимающих электроны и образующих химическую связь за счёт своей пустой орбитали и неподелённой пары электронов донора.

Гибридизация – процесс взаимодействия разных, но близких по энергии электронных орбиталей, приводящий к их выравниванию по форме и энергии.

Гомология – явление сходства по составу, строению, химическим свойствам и принадлежности к тому же классу одного вещества с другим веществом, но различающиеся друг от друга на одну или несколько групп СН2. Группу СН2 называют гомологической разностью.

Горение – быстро протекающий процесс окисления вещества, сопровождающийся большим выделением тепла и ярким свечением.

Группа функциональная – группа атомов, определяющая наиболее характерные химические свойства вещества и его принадлежность к определенному классу.

Донорное (электронодонорное) свойство – способность атомов элемента отдавать свои электроны другим атомам. Количественной мерой донорных свойств атомов, образующих химическую связь, является их электроотрицательность.

Изомерия – явление существования веществ, одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве и вследствие этого по физическим и химическим свойствам. Такие вещества называются изомерами.

Формула структурная – изображение молекулы, в котором показан порядок связывания атомов между собой. Химические связи в таких формулах обозначаются черточками.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Арены (ароматические углеводороды) – органические соединения, имеющие общую формулу СnH2n –6, а в составе молекулы бензольное кольцо (ядро).

Бензольное кольцо – это цикличная группа шести атомов углерода; структуру в виде кольца предложил Ф. А. Кекуле в 1865 г.

Простейшим представителем аренов является бензол С6Н6. Среди других представителей можно отметить, например, кумол (изопропилбензол) C6H5CH(CH3)2.

Формулы бензола

Полная структурная (формула, предложенная Ф.А. Кекуле)

Сокращенная структурная (формула, предложенная Ф.А. Кекуле)

Сокращенная структурная с сопряженными связями

Бензол – первый представитель класса аренов (ароматических углеводородов). Каждый атом углерода в молекуле бензола С6Н6 имеет 4 валентных электрона: s 1 p 3 . Тип гибридизации атомов углерода в бензольном кольце молекулы аренов, как и у алкенов, – sp 2 .

sp 2 гибридизация – это смешивание одного s и двух p электронных облаков и образование трёх одинаковых (гибридных). Гибридные облака участвуют в образовании 3 δ-связей, лежащих на плоскости. Оставшееся у каждого из шести атомов углерода негибридизованное третье p-облако имеет форму гантели. Шесть p-облаков, перекрываясь с соседними над и под плоскостью δ-связей, участвует в образовании общего 6-электронного облака, которое является общим для всех атомов углерода.

Свойства бензола и других ароматических соединений и их обусловленность электронным строением молекулы бензола.

Физические и химические свойства бензола и его гомологов

Физические свойства бензола

Бензол – бесцветная жидкость с характерным запахом, которая кипит при 80,1 °С, ρ = 0,876 г/cм 3 . Бензол очень огнеопасен!

Бензол является хорошим растворителем. В пробирку нальем 1 мл дистиллированной воды и добавим несколько капель масла. Масло не растворяется в воде даже после перемешивания содержимого. Во вторую пробирку нальем 1 мл бензола. Перемешаем содержимое. Масло растворяется в бензоле. Однако ввиду высокой токсичности, использование бензола в качестве растворителя нежелательно.

Сопряжение π-связей в молекуле бензола

Образование пи-связей в молекуле бензола обусловлено тем, что негрибридизованные облака образуют общие электронные плотности в виде колец над и под плоскостью молекулы бензола. Обратите внимание, что в результате образуется общее пи-электронное облако, а все связи между атомами углерода в молекуле бензола оказываются одинаковыми (их еще называют полуторными). Именно пи-электронные облака являются объяснением того факта, что – в отличие от первоначального варианта представления молекулярной формулы бензола с чередованием одинарных и двойных связей – бензол не проявляет выраженных свойств алкенов.

Химические свойства бензола

Реакции замещения (как алканы)

Реакция происходит в присутствии катализатора (соли FeBr3, AlCl3, AlBr3):

Реакции присоединения (как алкены)

Взаимодействие с перманганатом калия

Не обесцвечивает раствор перманганата калия (реакция не идёт)

Горение бензола

Бензол горит жёлтым коптящим пламенем, если внести в пламя стекло, на нем быстро оседает слой копоти.

Электрофилы – это положительно заряженные частицы, имеющие свободную орбиталь на внешнем электронном уровне и способные образовывать новые ковалентные связи за счёт пары электронов другой молекулы. К электрофилам относятся молекулы галогенов, SO3 и молекулы с сильнополяризованной связью (HCOO – Br + ).

Электрофильное замещение в ароматических соединениях можно представить реакцией присоединения-отщепления. Эта реакция проходит в несколько стадий.

При инициации реакции молекула хлора распадается на два иона. Катализатор, например, AlCl3, присоединяя ион хлора Cl − , приобретает отрицательный заряд. Оставшийся ион хлора Cl + , который является электрофилом, присоединяется к образовавшемуся на катализаторе отрицательному иону AlCl4 − .Образованное соединение называется π-комплексом. Этот комплекс вступает в реакцию с молекулой бензола, обеспечивая присоединение ионов хлора Cl + к атомам углерода.

Сравнение свойств бензола и толуола

Отношение к раствору KMnO4

Горение на воздухе

Присоединение хлора (галогена)

Замещение водорода хлором (галогеном)

Отношение к раствору KMnO4

Окисление боковых цепей (в присутствии H2SO4 или KMnO4)

Горение на воздухе

Присоединение хлора (галогена)

Замещение водорода хлором (галогеном)

ПРИМЕРЫ И РАЗБОР РЕШЕНИЯ ЗАДАНИЙ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Определение формулы бензола. Пошаговый тренажер решения задач

Найдите молекулярную формулу бензола, если известно, что его пары в 2,78 раз тяжелее азота.

1. Вывод формулы для нахождения относительной массы бензола из формулы относительной плотности.

D (по N2) = Mr (бензола) / Mr (N2), выведем формулу для расчета относительной массы бензола:

2. Рассчитаем относительную молекулярную массу азота, используя периодическую систему химических элементов Д.И. Менделеева.

3. Рассчитаем относительную молекулярную массу бензола (с точностью до целых):

Mr (бензола) = 2,78 · 28 = 77,84 ≈ 78.

Ответ: Mr (бензола) = 78

4. Бензол является углеводородом. Все углеводороды состоят из углерода и водорода.

5. Нахождение количества атомов углерода в молекуле бензола. Количество атомов углерода в молекуле бензола равно […].

Пусть количество атомов углерода равно x, а количество атомов водорода – y. Поскольку вещество имеет равное количество атомов углерода и водорода, то x = y.

Составим уравнение с учетом значений относительной атомной массы углерода и водорода, а также вычисленной относительной молекулярной массы бензола.

12 ⋅ x + 1 ⋅ y = 78.

x = y = 78 / 13 = 6.

Следовательно, в молекуле содержатся шесть атомов углерода и шесть атомов водорода.

6. Составление молекулярной формулы бензола С6Н6

2. Решение задачи о свойствах толуола

В результате взаимодействия 2,5 моль толуола с бромом образовалось 700 г трибромтолуола. Найдите практический выход реакции (%) от теоретически возможного. Ответ округлите до целого числа.

Химия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Определение и формула аренов

Арены (ароматические углеводороды) – соединения, включающие устойчивый цикл из шести атомов углерода (бензольное кольцо). Важнейший представитель – бензол.

Общая формула ароматических углеводородов: CnH2n-6

Строение молекулы бензола

Бензол – первый представитель гомологического ряда ароматических углеводородов, открытый в 1825 году Майклом Фарадеем. Т.к. его молекулярная формула – С6Н6, значит, в основе лежат двойные связи. Поэтому было предположено, что бензолу свойственна ненасыщенность. В 1865 году Фридрих Кекуле предположил структурную формулу бензола.

Но в экспериментах было доказано, что бензол входит в реакции присоединения только в жестких условиях и устойчив к реакциям окисления. Для него наиболее свойственно замещение, что доказывает принадлежность к предельным соединениям.

Парадоксальное электронное строение было доказано с помощью получения бензола из ацетилена. Его особенность заключается в том, что все атомы в кольце равноценны и имеют характер одинарных и кратных связей. Это можно отразить формулой с равномерным распределением электронной плотности.

Углеродные атомы в кольце имеют по четыре валентных электрона и им свойственна sp 2 -гибридизация. Атомы располагаются в единой плоскости. Особенности строения бензола состоят в том, что электроны составляют единую π-систему и все связи равноценны. Т.е. формула Кекуле неточна, т.к. отражает наличие двойных связей. Бензольное кольцо – это циклическая сопряженная система, связи которой перекрываются между собой.

Пространственное строение бензола Источник

Изомерия и номенклатура аренов

Для бензола и его гомологов характерна только структурная изомерия, которая включает:

  • изомерию углеродного скелета боковой цепи,
  • изомерию положения заместителей в кольце.

Главной цепью в названии аренов принимается ароматическое кольцо, от которого отходят заместители. В следующем представителе гомологического ряда ксилоле (диметилбензоле) имеет значение положение заместителей в кольце. Для его обозначения используются различные приставки:

  • орто- (о-) – заместители находятся у соседних углеродных атомов в кольце,
  • мета- (м-) – заместители находятся через один атом,
  • пара- (п-) – заместители находятся через два атома.

Методы получения аренов

В промышленности бензол и его гомологи можно получить несколькими способами.

  1. Из каменноугольной смолы.
  2. Дегидрирование и циклизация алканов при катализаторе и под действием высоких температур.
  1. Дегидрирование циклоалканов при катализаторе и под действием высоких температур

В лаборатории моноциклические соединения также получают несколькими путями.

  1. Циклотримеризация ацетилена и его гомологов при катализаторе и под действием высоких температур (реакция получения бензола)
  1. Реакция Вюрца-Фиттига – взаимодействие галогеналканов и арилгалогенидов с металлическим натрием
  • Алкилирование галогеналканами, алкенами и спиртами в присутствии кислот Льюиса

Физические свойства ароматических соединений

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом. Нерастворимы в воде, но растворимы в органических растворителях. Их плотность меньше плотности воды. Они огнеопасны и токсичны для животных и человека.

Химические реакции ароматических углеводородов

Несмотря на то, что бензол включает систему из сопряженных кратных связей, аренам не характерны реакции обесцвечивания бромной воды и перманганата калия.

Реакции присоединения

Бензолу характерны реакции присоединения, образуя циклогексан или его производные.

Реакции замещения

Аренам характерны реакции замещения.

Окисление аренов

При неполной химической реакции окисления гомологи бензола образуется бензойная кислота. Самому бензолу реакции окисления перманганатом калия не характерны.

Полимеризация аренов

В реакции полимеризации способен вступать стирол, образуя полистирол.

Области применения аренов

Без бензола и его гомологов невозможно представить современное промышленное производство. Основные области применения бензола – производство этилбензола, кумола и циклогексана и анилина.

Арены — номенклатура, получение, химические свойства

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С6Н6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С6Н14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле, содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p-орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре ( π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С—С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С—С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей. Простейший гомолог бензола — толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол. Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями, 4 — пара-, а 3 и 5 — метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо — в органических растворителях.

Химические свойства бензола

Реакции замещения. Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов. При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу —NO2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование. Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле СnH2n-6. Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С8Н10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто— (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м-) – через один атом углерода и пара— (п-) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.

Арены. Свойства аренов.

Арены (ароматические углеводороды) – соединения, в молекулах которых содержится одно или несколько бензольных колей – циклических групп атомов углерода со специфическим характером связей.

Бензол – молекулярная формула С6Н6. Впервые была предложена А. Кекуле:

Строение аренов.

Все 6 атомов углерода находятся в sp 2 -гибридизации. Каждый атом углерода образует 2 σ-связи с двумя соседними атомами углерода и одним атомом водорода, которые находятся в одной плоскости. Углы составляют 120°. Т.е. все атомы углерода лежат в одной плоскости и образуют шестигранник. У каждого атома есть негибридная р-обиталь, на которой находится неспаренный электрон. Эта орбиталь перпендикулярна плоскости, и поэтому π-электронное облако «размазано» по всем атомам углерода:

Все связи равноценны. Энергия сопряжения – количество энергии, которую надо затратить, чтобы разрушить ароматическую систему.

Именно это обуславливает специфические свойства бензола – проявление ароматичности. Это явление было открыто Хюккелем, и называется правилом Хюккеля.

Изомерия аренов.

Арены можно разделить на 2 группы:

  • производные бензола:

  • конденсированные арены:

Для аренов характерна структурная изомерия, которая объясняется взаимным расположением заместителей в кольце. Если в кольце находится 2 заместителя, то они могут находиться в 3-х различных положениях – орто (о-), мета (м-), пара (п-):

Если от бензола «отобрать» один протон, то образуется радикал – C6H5, которое носит название арильного радикала. Простейшие:

Называют арены словом «бензол» с указанием заместителей в кольце и их положения:

Физические свойства аренов.

Первые члены ряда – жидкости без цвета с характерным запахом. Они хорошо растворяются в органических растворителях, но нерастворимы в воде. Бензол токсичен, но имеет приятный запах. Вызывает головную боль и головокружения, при вдыхании больших количеств паров можно потерять сознание. Раздражает слизистую оболочку и глаза.

Получение аренов.

1. Из алифатических углеводородов с помощью «ароматизации» предельных углеводородов, входящих в состав нефти. При пропускании над платиной или оксидом хрома наблюдается дигидроциклизация:

2. Дегидрирование циклоалканов:

3. Из ацетилена (тримеризация) при пропускании над раскаленным углем при 600°С:

4. Реакция Фриделя – Крафтса в присутствии хлорида алюминия:

5. Сплавление солей ароматических кислот с щелочью:

Химические свойства аренов.

Реакции замещения аренов.

Ядро аренов обладает подвижной π-системой, на которую действуют электрофильные реагенты. Для аренов характерно электрофильное замещение, которое можно представить так:

Электрофильная частица притягивается к π-системе кольца, затем образуется прочная связь между реагентом Х и одним из атомов углерода, при этом единство кольца нарушается. Для восстановления ароматичности выбрасывается протон, а 2 электрона С-Н переходят в π-систему кольца.

1. Галогенирование происходит в присутствии катализаторов – безводных хлоридов и бромидов алюминия, железа:

2. Нитрование аренов. Бензол очень медленно реагирует с концентрированной азотной кислотой при сильном нагревании. Но если добавить серную кислоту, то реакция протекает очень легко:

3. Сульфирование протекает под воздействием 100% – серной кислоты – олеума:

4. Алкилирование алкенами. В результате происходит удлинение цепи, реакция протекает в присутствии катализатора – хлорида алюминия:

Реакции присоединения аренов.

1. Гидрирование (при катализаторах) аренов:

2. Радикальное галогенирование при взаимодействии паров бензола и сильного УФ-излучения. В результате образуется твердый продукт – С6H6Cl6:

3. Окисление кислородом воздуха. Реакция протекает при оксиде ванадия (V) и 400°С:

Гомологи бензола имеют ряд отличий – на их продукты я изначальный заместитель в кольце:

Замещение в кольце возможно только в присутствие катализатора (хлорида железа и алюминия), замещение протекает в орто- и пара- положения по отношению к алкильному радикалу:

Если действуют сильные окислители (перманганат калия), то цепь алкильная разрушается и образуется бензойная кислота:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: