Атомы и молекулы. Химический элемент. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений

Классификация неорганических веществ

Неорганическая химия – раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:

Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.

Оксиды

Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:

  • CuO – соответствует основанию Cu(OH)2
  • Li2O – соответствует основанию LiOH
  • FeO – соответствует основанию Fe(OH)2 (сохраняем ту же СО = +2)
  • Fe2O3 – соответствует основанию Fe(OH)3 (сохраняем ту же СО = +3)
  • P2O5 – соответствует кислоты H3PO4

Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.

Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.

Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.

Li2O + H2O → LiOH (основный оксид + вода → основание)

Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.

Амфотерные (греч. ἀμφότεροι – двойственный)

Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.

С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.

ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)

ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)

Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)

Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.

Каждому кислотному оксиду соответствует своя кислота. Это особенно важно помнить при написании продуктов реакции: следует сохранять степени окисления. Некоторым кислотным оксидам соответствует сразу две кислоты.

  • SO2 – H2SO3
  • SO3 – H2SO4
  • P2O5 – H3PO4
  • N2O5 – HNO3
  • NO2 – HNO2, HNO3

Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.

SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)

SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)

P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)

При реакции с водой кислотный оксид превращается в соответствующую ему кислоту. Исключение SiO2 – не реагирует с водой, так как продукт реакции – H2SiO3 является нерастворимой кислотой.

Несолеобразующие оксиды – оксиды неметаллов, которые не имеют соответствующих им гидроксидов и не вступают в реакции солеобразования. К таким оксидам относят:

  • CO
  • N2O
  • NO
  • SiO
  • S2O

Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:

FeO + CO → Fe + CO2 (восстановление железа из его оксида)

Основания

Основания – химические соединения, обычно характеризуются диссоциацией в водном растворе с образованием гидроксид-анионов. Растворимые основания называются щелочами: NaOH, LiOH, Ca(OH)2, Ba(OH)2.

Гидроксиды щелочных металлов (Ia группа) называются едкими: едкий натр – NaOH, едкое кали – KOH.

Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.

Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.

NaOH + HCl → NaCl + H2O (основание + кислота = соль + вода – реакция нейтрализации)

Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)

Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.

Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)

KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)

В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.

Амфотерные оксиды соответствуют амфотерным гидроксидам. Их свойства такие же двойственные: они реагирую как с кислотами – с образованием соли и воды, так и с основаниями – с образованием комплексных солей.

Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)

Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)

При нагревании до высоких температур комплексные соли не образуются.

Al(OH)3 + KOH → (t) KAlO2 + H2O (амф. гидроксид + основание = (прокаливание) соль + вода – при высоких температурах вода испаряется, и комплексная соль образоваться не может)

Читайте также:
Электролиты и неэлектролиты

Кислоты

Кислота – химическое соединение обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. По классификации кислоты подразделяются на одно-, двух- и трехосновные.

Основность кислоты определяется числом атомов водорода, которое способна отдать молекула кислоты, реагируя с основанием. Определять основность кислоты по числу атомов водорода в ней – часто верный способ, но не всегда: например, борная кислота H3BO3 является слабой одноосновной кислотой, фосфористая кислота H3PO3 – двухосновной кислотой.

Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).

H3PO4 + LiOH → Li3PO4 + H2O (кислота + основание = соль + вода – реакция нейтрализации)

Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)

Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)

Существуют нестойкие кислоты, которые в водном растворе разлагаются на кислотный оксид (газ) и воду – угольная и сернистая кислоты:

  • H2CO3 → H2O + CO2
  • H2SO3 → H2O + SO2

Записать эти кислоты в растворе в виде “H2CO3 или H2SO3” – будет считаться ошибкой. Пишите угольную и сернистую кислоты в разложившемся виде – виде газа и воды.

Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.

Однако невозможно (и противоречит законам логики) получить из более слабой кислоты сильную, например из уксусной – серную кислоту. Природу не обманешь :)

K2S + HCl → H2S + KCl (из сильной – соляной кислоты – получили более слабую – сероводородную)

K2SO4 + CH3COOH ↛ (реакция не идет, так как из слабой кислоты нельзя получить сильную: из уксусной – серную)

Подчеркну важную деталь: гидроксиды это не только привычные нам NaOH, Ca(OH)2 и т.д., некоторые кислоты также считаются кислотными гидроксидами, например серная кислота – H2SO4. С полным правом ее можно записать как кислотный гидроксид: SO2(OH)2

В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.

Соль – ионное соединение, образующееся вместе с водой при нейтрализации кислоты основанием (не единственный способ). Водород кислоты замещается металлом или ионом аммония (NH4). Наиболее известной солью является поваренная соль – NaCl.

По классификации соли бывают:

  • Средние – продукт полного замещения атомов водорода в кислоте на металл: KNO3, NaCl, BaSO4, Li3PO4
  • Кислые – продукт неполного замещения атомов водорода: LiHSO4, NaH2PO4 и Na2HPO4 (гидросульфат лития, дигидрофосфат и гидрофосфат натрия)
  • Основные – продукт неполного замещения гидроксогрупп на кислотный остаток: CrOHCl (хлорид гидроксохрома II)
  • Двойные – содержат два разных металла и один кислотный остаток (NaCr(SO4)2

Блиц-опрос по теме Классификация неорганических веществ

Атомы и молекулы. Химический элемент. Простые и сложные вещества. Основные классы неорганических веществ. Номенклатура неорганических соединений

ОКСИДЫ – это сложные вещества, состоящие из двух химических элементов, один из которых – кислород.

Оксиды могут быть солеобразующими и несолеобразующими. Солеобразующим оксидам соответствуют гидроксиды и соли с элементом в той же степени окисления, что и в оксиде. Несолеобразующие оксиды не имеют соответствующих гидроксидов и солей. Таких оксидов немного: N 2 O, NO, SiO, CO.

Солеобразующие оксиды в зависимости от кислотно-основного характера делятся на кислотные, амфотерные и основные.

Основные оксиды образованы металлами с небольшими степенями окисления +1, +2. Амфотерные оксиды образованы переходными металлами со степенями окисления +3, +4, а также Be, Zn, Sn, Pb. Кислотные оксиды образованы неметаллами, а также металлами со степенью окисления больше, чем +4. Рис. 3.

ОСНОВАНИЯ – это сложные вещества, состоящие из ионов металла и гидроксид-ионов.

это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:

Zn(OH) 2 = H 2 ZnO 2

форма основания форма кислоты

КИСЛОТЫ – это сложные вещества, состоящие из ионов водорода и кислотных остатков.

Кислоты – это сложные вещества, состоящие из атомов водорода, способных замещаться на металлы, и кислотных остатков. Кислоты можно разделить на группы по содержанию кислорода: кислородосодержащие (например, HNO 3 , H 2 SO 4 , H 3 PO 4 ) и бескислородные (HI, H 2 S).

СОЛИ – это сложные вещества, состоящие из ионов металла и кислотных остатков.

Средние соли состоят из катионов металла (или аммония) и анионов кислотных остатков. Кислые соли, кроме катионов металла, содержат катионы водорода и анион кислотного остатка. Основные соли в своем составе содержат гидроксид-анионы.

Если соль образована двумя видами катионов металлов и одним анионом, то ее называют двойной. Например, сульфат алюминия-калия KAl(SO 4 ) 2 .

Соли с двумя разными анионами и одним катионом называют смешанными. Например, Са(OCl)Cl – хлорид-гипохлорит кальция.

В комплексных солях содержится сложный ион, который принято заключать в квадратные скобки.

Классификация неорганических веществ

Химические вещества можно разделить на две неравные группы: простые и сложные.

Простые вещества состоят из атомов одного элемента (О2, P4).

Сложные вещества состоят из атомов двух и более элементов (CaO, H3PO4).

Простые вещества можно разделить на металлы и неметаллы.

Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).

Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.

Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе, либо в побочной. В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к какой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.

Например , в таблице Менделеева, которая используется на ЕГЭ по химии, элемент номер 31, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.

Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ. К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ. Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.

Основные классы сложных веществ — это оксиды, гидроксиды, соли.

Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.

В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).

Солеобразующие оксиды делят на основные, амфотерные и кислотные.

Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например, оксид лития Li2O, оксид железа (II) FeO.

Кислотные оксиды — это оксиды, которые проявляют кислотные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7 , а также атомами неметаллов с любой степенью окисления . Например, оксид хлора (I) Cl2O, оксид хрома (VI) CrO3.

Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .

Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO .

Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).

Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe2O3.

Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).

Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.

Солеобразующим оксидам соответствуют гидроксиды:

основному оксиду соответствует гидроксид основание ,

кислотному оксиду соответствует гидроксид кислота ,

амфотерному оксиду соответствует амфотерный гидроксид .

Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH)2.

Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H2CrO4, и кислотный остаток хромат-ион CrO4 2- .

Если все индексы кратны 2, то мы делим все индексы на 2.

Например : N2O5 + H2O → H2N2O6, делим на 2, получаем HNO3. Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.

Например : оксид P2O5, мета-форма: HPO3. Добавляем воду, орто-форма: H3PO4. Орто-форма устойчива у фосфора и мышьяка.

Оксид хрома (III) — Cr2O3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH)3 = HCrO2, кислотный остаток хромит: CrO2 — .

Взаимосвязь оксидов и гидроксидов:

Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .

Основания можно разделить на растворимые в воде ( щелочи ), нерастворимые в воде, и разлагающиеся в воде .

К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:

2AgOH → Ag2O + H2O

2CuOH → Cu2O + H2O

Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH)2) и с тремя – трехкислотные (Fe(OH)3) .

Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H3O + (H + ). Кислоты состоят из водорода H + и кислотного остатка.

По числу атомов водорода, которые можно заместить на металлы: одноосновные (HNO3), двухосновные (H2SO4), трехосновные (H3PO4) и т.д.

По содержанию атомов кислорода кислоты бывают бескислородные ( например , соляная кислота HCl) и кислородсодержащие ( например , серная кислота H2SO4).

Кислоты также можно разделить на сильные и слабые.

Сильные кислоты. К ним относятся:

  • Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
  • Некоторые высшие кислородсодержащие кислоты: H2SO4, HNO3, HClO4 и др.

Слабые кислоты . К ним относятся:

  • Слабые и растворимые кислоты : это H3PO4, CH3COOH, HF и др.
  • Летучие или неустойчивые кислоты : H2S — газ; H2CO3 — распадается на воду и оксид: H2CO3 → Н2О + СО2; H2SO3— распадается на воду и оксид: H2SO3 → H2O+ SО2↑.
  • Нерастворимые в воде кислоты : H2SiO3 и другие.

Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная. Если 1 или 0 — то кислота слабая.

Например : HClO: 1-1 = 0, следовательно, кислота слабая.

Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH4 + ) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.

Если рассматривать соли, как продукты взаимодействия кислоты и основания, то соли делят на средние , кислые и основные .

Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла ( например , Na2CO3, K3PO4).

Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов ( например , NaHCO3, K2HPO4).

Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты ( например , малахит (CuOH)2CO3).

По числу катионов и анионов соли разделяют на:

Простые соли – состоящие из катиона одного типа и аниона одного типа ( например , хлорид кальция CaCl2).

Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа ( например , алюмокалиевые квасцы – KAl(SO4)2).

Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа ( например , хлорид-гипохлорит кальция Ca(OCl)Cl).

По структурным особенностям выделяют также гидратные соли и комплексные соли.

Гидратные соли (кристаллогидраты) – это такие соли, в состав которых входят молекулы кристаллизационной воды ( например , декагидрат сульфата натрия Na2SO4·10 H2O).

Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K3[Fe(CN)6], [Cu(NH3)4]Cl2).

Помимо основных классов неорганических соединений, существуют и другие.

Например , бинарные соединения элементов с водородом.

Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.

Солеобразные гидриды ЭНх – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH.

Летучие водородные соединения НхЭ – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH3, фосфин PH3.

Классификация неорганических веществ

Урок 25. Химия 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Классификация неорганических веществ”

Каждый класс веществ образован веществами со сходными свойствами. Эти вещества имеют схожее строение и состав.

Все неорганические вещества делят на простые и сложные. Простые вещества состоят из атомов одного химического элемента. К простым веществам относятся металлы: медь, железо, натрий и другие; неметаллы: сера, фосфор, кислород, хлор; инэртные, или благородные газы: аргон, криптон, гелий, неон.

Сложные вещества состоят из атомов нескольких химических элементов. К сложным веществам относятся оксиды, основания, амфотэрные гидроксиды, кислоты и соли.

Оксидыэто сложные вещества, которые состоят из двух химических элементов, один из которых кислород. Общая формула оксидов: э-эм-о-эн, где эм и эн – индэксы. Степень окисления кислорода в оксидах равна минус двум.

Оксиды делят на две группы: солеобразующие и несолеобразующие (индифферентные).

Солеобразующие оксиды образуют гидроксиды и соответствующие соли. Например, к солеобразующим оксидам относятся оксид серы шесть, оксид кальция, оксид алюминия.

Несолеобразующие оксиды не образуют гидроксидов и солей. К таким оксидам относятся: оксид азота один, оксид азота два, оксид углерода два, оксид кремния два.

Оксиды бывают кислотные, амфотэрные и основные. Кислотным оксидам соответствуют кислотные гидроксиды, основным оксидам соответствуют основные гидроксиды.

Например: оксиду натрия соответствует основный гидроксид – гидроксид натрия, в реакции этого гидроксида с соляной кислотой образуется соль – хлорид натрия.

Оксиду алюминия соответствует амфотэрный гидроксид – гидроксид алюминия, этот гидроксид с азотной кислотой образует соль – нитрат алюминия.

Оксиду серы шесть соответствует кислотный гидроксид – серная кислота, эта кислота с гидроксидом меди два образует соль – сульфат меди два.

Оксиду марганца семь соответствует кислотный гидроксид – марганцовая кислота, которая в реакции с гидроксидом калия образует соль – перманганат калия.

Кислотные оксиды образованы элементами металлами и неметаллами со степенью окисления больше, чем плюс четыре.

Кислотным оксидам соответствуют кислоты: оксиду углерода четыре соответствует угольная кислота, оксиду серы шесть соответствует серная кислота, оксиду фосфора пять соответствует фосфорная кислота.

Для этих оксидов характерен ковалентный характер связи между элементами. В основном у кислотных оксидов молекулярная кристаллическая решётка. Они могут быть газообразными, жидкими и твёрдыми. Например: оксид серы четыре, оксид углерода четыре – газы, оксид хлора семь, оксид марганца семь – жидкости, оксид фосфора пять, оксид кремния четыре, оксид хрома шесть – твёрдые.

Основные оксидыэто оксиды, гидраты которых являются основаниями. Все основные оксиды являются оксидами металлов. Например: оксиду натрия соответствует гидроксид натрия, оксиду кальция соответствует гидроксид кальция, оксиду железа два соответствует гидроксид железа два.

Амфотэрные оксидыэто оксиды, которым соответствуют амфотэрные гидроксиды. Все амфотэрные оксиды являются оксидами металлов. Например: оксид алюминия, оксид хрома три, оксид железа три, оксид свинца четыре, оксид олова четыре. Так оксиду цинка соответствует амфотэрный гидроксид – гидроксид цинка, оксиду алюминия соответствует амфотэрный гидроксид – гидроксид алюминия.

Оксиды широко распространены в природе. Так, большая часть Земли покрыта Мировым океаном, который образован оксидом водорода, в атмосфере содержится оксид углерода четыре; оксид кремния четыре является основой многих минералов и горных пород, таких как кварц, аметист, яшма; оксид алюминия – корунд, известные и его разновидности – рубин и сапфир.

Основанияэто сложные вещества, состоящие из катионов металлов и гидроксогруппы. Общая формула оснований – металл –о-аш.

К основаниям относятся: гидроксид натрия, гидроксид кальция, гидроксид железа три, гидроксид калия и другие. Для оснований характерен ионный тип связи, а значит, и ионная кристаллическая решётка, поэтому основания – это твёрдые вещества.

По числу гидроксогрупп различают однокислотные основания (как гидроксид натрия), двухкислотные (как гидроксид железа два), трёхкислотные (как гидроксид никеля три).

По растворимости в воде различают растворимые в воде основания – щёлочи, которые являются сильными основаниями. К ним относятся: гидроксид натрия, гидроксид бария и другие. Нерастворимые в воде основания – это слабые основания. К ним относятся: гидроксид меди два, гидроксид железа два.

Щёлочи являются твёрдыми веществами.

В реакции сульфата меди два с гидроксидом натрия образуется нерастворимое основание – гидроксид меди два и соль – сульфат натрия.

При добавлении гидроксида натрия к сульфату железа два образуется также нерастворимое основание – гидроксид железа два и соль – хлорид натрия.

Есть основания, где в составе не ионы металла, а катион аммония. Раствор аммиака используют как нашатырный спирт, основания используют для штукатурки стен.

Кислотыэто сложные вещества, которые состоят из атомов металла и кислотных остатков.

Кислоты могут быть образованы не только атомами неметаллов, как соляная кислота, сернистая, азотная кислоты, но и атомами металлов в высшей степени окисления: как например марганцовая кислота.

По количеству атомов водорода (основности) различают одноосновные кислоты (такие как соляная кислота, азотная), двухосновные (такие как сероводородная, дихромовая кислоты), трёхосновные (как фосфорная кислота).

По содержанию атомов кислорода различают кислородсодержащие кислоты (или оксокислоты), как азотная кислота, хромовая кислота, так и бескислородные, как сероводородная, соляная.

По летучести кислоты бывают летучие, которые легко испаряются или выветриваются из раствора: это такие кислоты, как соляная, бромоводородная, азотная, сероводородная; к нелетучим кислотам относятся серная, фосфорная кислота и другие.

Кислоты бывают сильные и слабые. Сильные кислоты практически полностью диссоциируют на ионы. К таким кислотам относятся: азотная, серная, соляная, хлорная. Слабые кислоты диссоциируют незначительно, к таким кислотам относятся: сернистая, сероводородная, фосфорная кислоты.

К кислотам-окислителям относятся: азотная кислота, серная, то есть в этих кислотах есть элемент-окислитель. К кислотам-неокислителям относится большинство кислот, в которых окислителем является ион водорода.

Для кислот характерен ковалентный тип связи и молекулярная кристаллическая решётка.

При обычных условиях кислоты могут быть в газообразном состоянии: как соляная и сероводородная, в жидком состоянии, как азотная, серная кислоты. Кислоты могут быть и в твёрдом состоянии, как кремниевая кислота.

Амфотэрные гидроксидыэто сложные вещества, имеющие свойства кислот и оснований, поэтому формулы амфотэрных гидроксидов можно записать в форме оснований и в форме кислот.

Их образуют элементы, проявляющие переходные свойства металлов и неметаллов. Эти соединения образуют большинство дэ-элементов со степенью окисления плюс три, плюс четыре, иногда плюс два; эти соединения могут образовывать и пэ-элементы: бериллий, алюминий, олово, свинец.

К амфотэрным гидроксидам относятся гидроксид цинка, гидроксид алюминия, гидроксид железа три, гидроксид бериллия.

Амфотэрные гидроксиды практически нерастворимы в воде. Например, при растворении хлорида железа три с гидроксидом натрия образуется бурый осадок – гидроксид железа три.

При растворении сульфата алюминия с гидроксидом натрия образуется белый осадок – гидроксид алюминия. Полученные гидроксиды являются амфотэрными гидроксидами.

Таким образом, к гидроксидам относятся основания, амфотэрные гидроксиды и кислородсодержащие кислоты.

Солиэто сложные вещества, которые состоят из катионов металла или аммония и кислотных остатков.

Соли бывают средними, кислыми, основными.

Средние солиэто продукты полного замещения атомов водорода в кислоте атомами металлов: например, хлорид калия, нитрат алюминия, сульфат меди два, сульфит натрия.

Кислые солиэто продукты неполного замещения атомов водорода в молекулах многоосновных кислот атомами металла. Например: гидрокарбонат натрия, дигидрофосфат калия, гидрофосфат калия, гидросульфат натрия.

Основные солиэто продукты неполного замещения гидроксидных групп в молекулах многокислотных оснований кислотными остатками. Например: гидроксохлорид меди два, дигидроксонитрат алюминия, гидроксохлорид железа два.

Для солей характерен ионный характер связи и ионная кристаллическая решётка, поэтому это твёрдые вещества.

Соли применяются в быту: например, перманганат калия используют как дезинфицирующее средство, широко используют алебастр и побелку, при приготовлении пищи используют поваренную соль.

Таким образом, вещества делят на простые и сложные. К простым веществам относятся металлы, неметаллы, инэртные газы. К сложным веществам относятся оксиды, основания, амфотэрные гидроксиды, кислоты и соли.

2.1. Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная).

Классификация неорганических веществ с примерами соединений

Теперь проанализируем представленную выше классификационную схему более детально.

Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные:

Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H2, кислород O2, железо Fe, углерод С и т.д.

Среди простых веществ различают металлы, неметаллы и благородные газы:

Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.

Благородные газы образованы химическими элементами VIIIA группы.

Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:

Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O2 и O3. Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.

Сложные вещества

Сложными веществами называют вещества, образованные атомами двух или более химических элементов.

Так, например, сложными веществами являются аммиак NH3, серная кислота H2SO4, гашеная известь Ca(OH)2 и бесчисленное множество других.

Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:

Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.

Общая формула оксидов может быть записана как ЭxOy, где Э — символ какого-либо химического элемента.

Номенклатура оксидов

Название оксида химического элемента строится по принципу:

Fe2O3 — оксид железа (III); CuO — оксид меди (II); N2O5 — оксид азота (V)

Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N2O5 равна +5, а валентность, как это ни странно, равна четырем.

В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:

Na2O — оксид натрия; H2O — оксид водорода; ZnO — оксид цинка.

Классификация оксидов

Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие.

Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N2O, NO.

Солеобразующие оксиды в свою очередь подразделяются на основные, кислотные и амфотерные.

Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.

Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N2O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).

Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.

Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr2O3 и кислотный оксид CrO3.

Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.

Основания

Основания — соединения с формулой вида Me(OH)x, где x чаще всего равен 1 или 2.

Исключения: Be(OH)2, Zn(OH)2, Sn(OH)2 и Pb(OH)2 не относятся к основаниям, несмотря на степень окисления металла +2. Данные соединения являются амфотерными гидроксидами, которые еще будут рассмотрены в этой главе более подробно.

Классификация оснований

Основания классифицируют по количеству гидроксогрупп в одной структурной единице.

Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH)2, соответственно, двухкислотными и т.д.

Также основания подразделяют на растворимые (щелочи) и нерастворимые.

К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.

Номенклатура оснований

Название основания строится по нижеследующему принципу:

Fe(OH)2 — гидроксид железа (II),

Cu(OH)2 — гидроксид меди (II).

В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:

NaOH — гидроксид натрия,

Ca(OH)2 — гидроксид кальция и т.д.

Кислоты

Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.

Общая формула кислот может быть записана как HxA, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.

Например, к кислотам относятся такие соединения, как H2SO4, HCl, HNO3, HNO2 и т.д.

Классификация кислот

По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:

— одноосновные кислоты: HF, HCl, HBr, HI, HNO3;

Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH3COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.

Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H2SO4, HNO3, H3PO4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами.

Более детально про классификацию кислот можно почитать здесь.

Номенклатура кислот и кислотных остатков

Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.

В некоторых случаях облегчить запоминание может ряд следующих правил.

Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:

HF — фтороводородная кислота;

HCl — хлороводородная кислота;

H2S — сероводородная кислота.

Названия кислотных остатков бескислородных кислот строятся по принципу:

Например, Cl — — хлорид, Br — — бромид.

Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:

Например, серная кислота H2S +6 O4, хромовая кислота H2Cr +6 O4.

Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:

Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.

Амфотерные гидроксиды

Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.

Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).

Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH)2, Zn(OH)2, Sn(OH)2 и Pb(OH)2, несмотря на степень окисления металла в них +2.

Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH)3 или мета-форме AlO(OH) (метагидроксид).

Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:

Амфотерный гидроксид в форме основания Амфотерный гидроксид в форме кислоты «Кислотный» остаток
Zn(OH)2
гидроксид цинка
H2ZnO2
цинковая кислота
ZnO2 2-
цинкат
Al(OH)3
(орто)гидроксид алюминия
H3AlO3
ортоалюминиевая кислота
AlO3 3-
ортоалюминат
AlO(OH)
метагидроксид алюминия
HAlO2
метаалюминиевая кислота
AlO2
метаалюминат

Соли — это сложные вещества, в состав которых входят катионы металлов и анионы кислотных остатков.

Так, например, к солям относятся такие соединения как KCl, Ca(NO3)2, NaHCO3 и т.д.

Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH4)2SO4 (сульфат аммония), [CH3NH3] + Cl — (хлорид метиламмония) и т.д.

Также противоречат определению солей выше класс так называемых комплексных солей, которые будут рассмотрены в конце данной темы.

Классификация солей

С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.

При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na2SO4, а при полном замещении гидроксид-ионов в основании Ca(OH)2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO3)2.

Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO4.

Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют основными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH)2 на нитрат-ионы образуется основная соль Ca(OH)NO3.

Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями. Так, например, двойными солями являются KNaCO3, KMgCl3 и т.д.

Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.

Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na2[Zn(OH)4] и Na[Al(OH)4] соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H2[SiF6] не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение [Ag(NH3)2]OH, т.к. данное соединение состоит из катионов [Ag(NH3)2] + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.

Номенклатура солей

Номенклатура средних и кислых солей

Название средних и кислых солей строится по принципу:

Если степень окисления металла в сложных веществах постоянная, то ее не указывают.

Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.

NaHSO4 — гидросульфат натрия;

CaCO3 — карбонат кальция;

Ca(HCO3)2 — гидрокарбонат кальция и т.д.

Номенклатура основных солей

Названия основных солей строятся по принципу:

(CuOH)2CO3 — гидроксокарбонат меди (II);

Fe(OH)2NO3 — дигидроксонитрат железа (III).

Номенклатура комплексных солей

Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.

Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:

*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Виды простых и сложных веществ

Простые и сложные вещества в химии

В неорганической химии вещества по составу делятся на простые и сложные.

  • состоят из атомов одного химического элемента: сера S, углерод С, железо Fe, серебро Ag;
  • подразделяют на металлы и неметаллы (включая благородные газы).

Сложные вещества — соединения:

  • состоят из атомов двух или более химических элементов: Na2O, HCl, CuSO4;
  • подразделяют на: оксиды, основания, кислоты и соли.

Классификация простых веществ

1. Простые вещества условно делят на две группы: металлы и неметаллы.

Неметаллы в Периодической системе — это все элементы VIII А-группы (благородные газы) и VII А-группы (галогены), элементы VI А-группы (кроме полония), элементы V А-группы: азот, фосфор, мышьяк; углерод, кремний (IV А-группа); бор (III А-группа), а также водород. Остальные элементы относят к металлам.

Отличия свойств металлов и неметаллов приведены в таблице 1:

Амфотерные элементы находятся в А-группах Периодической системы: бериллий Be, алюминий Al, галлий Ga, германий Ge, олово Sn, свинец Pb, сурьма Sb, висмут Bi, полоний Po и др., а также большинство элементов Б-групп: хром Cr, марганец Mn, железо Fe, цинк Zn, кадмий Cd, золото Au и др., проявляют и металлические (оснóвные для соединений), и неметаллические (кислотные для соединений) свойства.

Благородные (инертные) газы (VIII А-группа Периодической системы): гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радиоактивный радон Rn:

  • обнаруживаются в воздухе, в малых количествах — в воде, горных породах, природных газах;
  • не имеют цвета, вкуса и запаха;
  • крайне химически инертны;
  • используются в источниках света для создания освещения различных цветов (Ne — огненно-красный, Xe— синевато-серый, тусклый, Ar — фиолетово-голубой и др).

2. Сложные соединения и их отличия от простых веществ.

Сложные вещества бывают органические, в основе которых лежит углерод, и неорганические (безуглеродные и некоторые углеродсодержащие соединения: карбиды, карбонаты, оксиды углерода и другие). Неорганические чаще всего подразделяют на оксиды, основания, кислоты и соли.

Главные отличия сложных неорганических веществ:

  1. Свойства элементов, входящих в соединение, не сохраняются. Например, металл кальций Ca и неметалл хлор Cl2. Каждому из этих простых веществ присущи свои характеристики. А соль CaCl2 имеет новые, отличные от характеристик простых веществ, свойства, сходные со свойствами класса солей.
  2. В ходе химических реакций сложное вещество может быть получено или разложено на составные части.
  3. Количественный состав сложного соединения всегда одинаков, независимо от места нахождения и способа получения (для веществ молекулярного состава).

Классификация неорганических соединений и их основные свойства приведены в таблице 2.

Классы и номенклатура неорганических веществ

Номенклатура — способ называния веществ.

Химическая формула — представление состава вещества с использованием символов химических элементов, числовых индексов и других знаков. Химическое название определяется составом вещества и изображается с помощью слова или группы слов. Названия строятся по номенклатурным правилам, с использованием русских названий элементов, кроме случаев, когда традиционно употребляются латинские корни (таблица 3):

Ag — аргент C — карб, карбон H — гидр, гидроген N — нитр Pb — плюмб, Si — сил, силик, силиц
As — арс, арсен Cu — купр Hg — меркур Ni — никкол S — сульф Sn -станн
Au — аур Fe — ферр Mn — манган O — окс, оксиген Sb — стиб
Например, оксид натрия Na2O, карбонат кальция CaCO3, перманганат калия KMnO4
  1. Названия простых веществ чаще всего совпадают с русскими названиями соответствующих химических элементов. По необходимости к ним добавляется числовая греческая приставка: моно — 1, ди (латинский) — 2, три — 3, тетра — 4, пента — 5, гекса — 6, гепта — 7, окта — 8, нона (латинский) — 9, дека — 10. Например, (моно) кальций Ca, (моно) медь Cu, дикислород O2, трикислород O3, тетрафосфор P4. Исключение: аллотропные модификации: углерода С — графит, сажа, алмаз; кислорода — озон O3.
  2. Названия сложных веществ составляют по химической формуле справа налево. Для каждого класса веществ существуют свои правила составления формул и названий:
  • формула оксидов: ЭnOm, где n и m — числовые индексы, определяющиеся степенями окисления элементов. Например,

Li+1 и O-2→ Li2O; Al+3 и O-2→ Al2O3; N+5 и O-2→ N2O5.

Название оксида: слово «оксид» в именительном падеже + название элемента Э в родительном падеже: оксид лития Li2O, оксид алюминия Al2O3.

Если элемент образует несколько оксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:

  • P2O5 — пентаоксид (ди)фосфора или оксид фосфора (V), читается: «оксид фосфора пять»;
  • Fe2O3 — триоксид (ди)железа или оксид железа (III), читается: «оксид железа три».

Оксиды, которым соответствуют кислоты, также называют ангидридами: серный ангидрид SO3, азотный ангидрид N2O5 и др.

  • формула оснований: Me+n(OH-)n, где нижний индекс n — количество гидроксид-анионов OH-.

K+1 и OH- → KOH, Mg+2 и OH- → Mg(OH)2.

Название: слово «гидроксид» в именительном падеже + название элемента в родительном падеже: гидроксид калия, гидроксид магния.

Если элемент образует несколько гидроксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:

Fe(OH)2 — гидроксид железа (II), Cr(OH)3 — гидроксид хрома (III).

  • формула кислот HnК, где K — кислотный остаток.

Названия бескислородных кислот: корень русского названия элемента, образующего кислоту + суффикс «о» + «-водородная кислота», например: HBr — бромоводородная кислота, HCl — хлороводородная кислота, H2S — сероводородная кислота.

Названия кислородсодержащих кислот: русское название образующего элемента + «кислота», с учетом правил:

  1. Если элемент находится в высшей степени окисления, то окончание будет «-ная» или «-овая»: H2SO4 — серная кислота, H3AsO4 — мышьяковая кислота. Окончание меняется с понижением степени окисления в последовательности: «-оватая» (HClO3— хлорноватая кислота), «-истая» (HClO2— хлористая кислота), «-оватистая» (HClO— хлорноватистая кислота).
  2. Если оксиду соответствует не одна кислота, то к названию кислоты с минимальным числом атомов кислорода, добавляется приставка «мета», а к названию кислоты с максимальным числом атомов кислорода — «орто», например, HPO3 — метафосфорная кислота, H3PO4 — ортофосфорная кислота.

Названия наиболее распространенных кислот и их остатков приведены в таблице 4:

Формула и название кислоты Название кислотного остатка, образующего соль
HAlO2 метаалюминиевая метаалюминат
H3AlO3 ортоалюминиевая ортоалюминат
HAsO3 метамышьяковая метаарсенат
H3AsO4 ортомышьяковая ортоарсенат
H3BO3 ортоборная ортоборат
HBr бромоводородная бромид
HBrO бромноватистая гипобромит
HBrO3 бромноватая бромат
HCN циановодородная цианид
H2CO3 угольная карбонат
HCl хлороводородная хлорид
HClO хлорноватистая гипохлорит
HClO2 хлористая хлорит
HClO3 хлорноватая хлорат
HClO4 хлорная перхлорат
HF фтороводородная фторид
HJ йодоводородная йодид
HMnO4 марганцовая перманганат
HNO2 азотистая нитрит
HNO3 азотная нитрат
HPO3 метафосфорная метафосфат
H3PO4 ортофосфорная ортофосфат
H2S сероводородная сульфид
H2SO3 сернистая сульфит
H2SO4 серная сульфат
H2SiO3 метакремниевая метасиликат
H3SiO4 ортокремниевая ортосиликат
  • формула солей: MemKn

Название образуется в зависимости от типа соли.

  1. Средние соли — наименование кислотного остатка в именительном падеже + наименование катиона в родительном падеже, если необходимо, добавляется степень окисления: хлорид натрия NaCl, сульфат меди (II) CuSO4 и т.д.
  2. Кислые (только для многоосновных кислот) — приставка «гидро», при необходимости добавляется числовое значение (ди—, три—, тетра— и т.д.) + название кислотного остатка + название катиона: гидрокарбонат натрия NaHCO3, дигидроортофосфат бария Ba(H2PO4)2.
  3. Оснóвные — приставка «гидроксо» с числовым значением, если необходимо + название кислотного остатка + название катиона: гидроксохлорид магния MgOHCl, дигидроксохлорид железа (III) Fe(OH)2Cl.
  4. Двойные — анион в именительном падеже + катионы через дефис в родительном падеже: ортофосфат аммония—магния NH4MgPO4; метасиликат алюминия—лития LiAl(SiO3)2.
  5. Смешанные — название анионов через дефис в именительном падеже + название катиона в родительном падеже: хлорид-гипохлорит кальция Ca(ClO)Cl; нитрат-йодат натрия Na2IO3(NO3).
  6. Комплексные — название катиона в именительном падеже + название аниона в родительном падеже: хлорид диамминсеребра (I) [Ag(NH3)2]Cl; тетрагидроксоалюминат натрия Na[Al(OH)4].
  • номенклатура бинарных соединений.

Бинарные соединения — сложные вещества, состоящие из двух элементов. В таких соединениях встречается два типа химической связи: ковалентная полярная (для неметаллов и некоторых амфотерных элементов) или ионная (для солей бескислородных кислот).

Названия строятся по схеме: к корню более электроотрицательного элемента добавляется окончание -ид (оксид, гидрид, карбид и т.д.) в именительном падеже + название второго элемента в родительном падеже, при необходимости добавляется числовое значение степени окисления: CS2 — дисульфид углерода или сульфид углерода (IV), MnF4 — тетрафторид марганца или фторид марганца (IV).

Для некоторых есть тривиальные названия: NH3 — аммиак, SiН4 — силан, PH3 — фосфин и др.

Строение и химические свойства

Простые вещества состоят из атомов одного химического элемента:

  • одноатомные: благородные газы — гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радон Rn;
  • двухатомные: водород H2, кислород O2, азот N2 и галогены: хлор Cl2, йод J2, бром Br2;
  • трех и более атомные: озон O3, белый фосфор P4, кристаллическая (ромбическая и моноклинная) сера S8.

Порядок соединения атомов при образовании из них веществ обусловливает особенности строения веществ. Различают вещества молекулярного и немолекулярного строения. Немолекулярное строение имеют все металлы и большинство их соединений, графит, красный фосфор, алмаз, кремний Si и др. Большинство неметаллов и их соединений состоят из молекул, т. е. имеют молекулярное строение.

Химические свойства металлов и неметаллов

1. Химические свойства металлов определяются способностью отдавать свободные электроны с внешнего уровня. Они являются восстановителями. Взаимодействие идет с:

  • неметаллами:
  • +кислород O2 (кроме золота и металлов группы платины) → оксиды: 2Ca+ O2 → 2CaO;
  • +галогены (F2, Cl2, Br2) → галогениды (фторид, хлорид, бромид и т.д.): Cu + Br2 → CuBr2;
  • +азот, фосфор, сера, водород → нитриды, фосфиды, сульфиды, гидриды: 3Ca + N2 → Ca3N2.
  • водой (только щелочные и щелочно-земельные металлы) → гидроксиды: 2Na + 2H2O → 2NaOH + H2↑;
  • кислотами (металлы, стоящие в ряду активности до водорода) → соль: Mg + 2HCl → MgCl2 + H2↑;
  • растворами солей менее активных металлов: Fe + CuSO4 → FeSO4 + Cu, при следующих условиях:
  • соли, вступающие в реакцию и получающиеся в ходе нее, должны быть растворимы;
  • металл вытесняет из соли другой металл, если находится левее в ряду активности;
  • щелочные и щелочно-земельные металлы в данном случае будут вступать в реакцию с водой, а не с солью.
  • оксидами (более активный металл вытесняет менее активный): Fe2O3 + 2Al → Al2O3 + 2Fe.

2. Химические свойства неметаллов обусловлены свободными электронами (от 3 до 7) на внешнем электронном уровне.

  • окислительные свойства наиболее характерны (стремятся присоединять электроны) в реакциях с:
  • металлами: O2+2Mg → 2MgO; S + 2Na → Na2S;
  • неметаллами:
  • кислород O2 (из галогенов реагирует только фтор): S + O2 → SO2;
  • водород H2 (кроме кремния, фосфора и бора) : С + 2H2 → CH4;
  • неметалл c меньшей электроотрицательностью: 3S + 2P → P2S3 (нагревание без доступа воздуха, сера — окислитель);
  • солями (вытесняют менее активные неметаллы): Cl2 + 2NaBr → 2NaCl + Br2.
  • восстановительные свойства (исключение: фтор F — всегда окислитель) в некоторых реакциях с:
  • неметаллами, электроотрицательность которых ниже: C + O2→ CO2 (углерод — восстановитель);
  • сложными веществами — окислителями (CuO, HNO3): S + 6HNO3 → H2SO4 + 6NO2↑ + 2H2O.
  • и окислительные, и восстановительные свойства проявляют хлор, сера, фосфор, йод и бром в реакциях диспропорционирования:
  • Cl20 + H2O → HCl-1 + HCl+1O;
  • 3S0 + 6NaOH → 2Na2S-2 + Na2S+6O3 + 3H2O.

Химические свойства благородных газов

  • плохо растворяются в воде и вступают в реакции с другими веществами только в специально созданных условиях;
  • не горят; вытесняют кислород из воздуха, снижая его содержание до критически низких показателей, приводящих к смерти.

Строение и основные химические свойства сложных веществ

Сложные соединения имеют ионную или ковалентную связь между атомами.

  • оснóвные + кислоты → соли: CaO + 2HCl → CaCl2 + H2O;
  • кислотные + основания → соли: SO3 + 2NaOH → Na2SO4 + H2O;
  • амфотерные реагируют и с кислотами, и с основаниями → соли:

ZnO + H2SO4 → ZnSO4 + H2О,

ZnO+ 2NaOH + H2O → Na2[Zn(OH)4].

Все основания реагируют с кислотами (реакция нейтрализации):

  • KOH + 2HCl → KCl + H2O;
  • 2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O.

1. Щелочи взаимодействуют с:

  • неметаллами: 6KOH + 3S → K2SO3 + 2K2S + 3H2O;
  • кислотными оксидами: 2NaOH + NO2 → NaNO2 + NaNO3 + H2O.

2. Нерастворимые основания разлагаются при нагревании: Cu(OH)2 → CuO + H2O.

  • + основания (реакция нейтрализации): 2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O;
  • + металлы, стоящие левее водорода в ряду активности: Mg + 2HCl → MgCl2 + H2↑;
  • + основные и амфотерные оксиды: CaO + H2SO4 → CaSO4 + H2O; ZnO + H2SO4 → ZnSO4 + H2O;
  • + соли: BaCl2 + H2SO4 → BaSO4 + 2HCl.
  • + кислоты (сильные): Na2SiO3 + 2HCl → H2SiO3↓ + 2NaCl;
  • + щёлочи, если образуется нерастворимое основание: FeCl3 + 3NaOH → Fe(OH)3↓ + 3NaCl;
  • + металлы: Zn + Pb(NO3)2 → Pb↓ + Zn(NO3)2;
  • + соли при условии необратимости реакции: Na2CO3 + Ca(NO3)2 → CaCO3↓ + 2NaNO3.

Также о химических свойствах неорганических соединений можно почитать в статье «Классы неорганических соединений».

Подготовка к ОГЭ по химии 9 класс

Вещества простые и сложные. Классификация неорганических веществ.

Вещества могут состоять из атомов как одного, так и разных химических элементов. По этому признаку все вещества делятся на простые и сложные.

Вещества, состоящие из атомов одного химического элемента, называются простыми. Простые вещества делятся на металлы (образованы атомами металлов: Na, K, Ca, Mg) и неметаллы (образован атомами неметаллов H2, N2, O2, Cl2, F2, S, P, Si ) по их физическим и химическим свойствам.

Вещества, состоящие из атомов разных химических элементов, называются сложными веществами. К основным классам сложных неорганических веществ относятся оксиды, основания, кислоты и соли.

Оксиды – это бинарные соединения (соединения, состоящие из двух химических элементов), в состав которых входит элемент кислород в степени окисления -2.
Оксиды делятся на основные, амфотерные, кислотные и несолеобразующие:
1. Основные оксиды образованы атомами типичных металлов и атомами кислорода. Например, Na2O, CaO, LiO. Им соответствуют гидроксиды – основания.
2. Амфотерные оксиды образованы атомами переходных металлов и атомами кислорода. Например, BeО, ZnО, Al2О3. Им соответствуют амфотерные гидроксиды.
3. Кислотные оксиды образованы атомами неметалла и атомами кислорода. Например, CO2, SiO2, N2O3, NO2, N2O5,P2O3, P2O5, SO2, SO3, Cl2O7 и т.д. Им соответствуют гидроксиды – кислоты.
4. Несолеобразующие оксиды образованы атомами неметалла и кислородом. К несолеобразующим оксидам относятся 4 оксида:CO, SiO, N2O, NO.

Основания – это соединения, в состав которых входит катион металла (или аммония) и одна или несколько гидроксильных групп. Например, NaOH, Ca(OH)2, KOH, NH4OH.
Особо выделяют растворимые основания, которые называют щелочами. К ним относятся гидроксиды щелочных и щелочноземельных металлов.
По числу гидроксильных групп основания делятся на одно-, двух- и трёхкислотные.

Амфотерные гидроксиды образованы катионами бериллия, цинка или алюминия и гидроксиданионами: Be(OH)2, Zn(OH)2, Al(OH)3.

Кислоты – это соединения, в состав которых входят катионы водорода и анионы кислотного остатка. По числу катионов водорода кислоты делятся на одно-, двух- и трёхосновные. По наличию кислорода в кислотном остатке кислоты делятся на бескислородные и кислородсодержащие.
HF – фтороводородная (или плавиковая) кислота
HCl – хлороводородная (или соляная) кислота
HBr – бромоводородная кислота
HI – йодоводородная кислота
H2S – сероводородная кислота
HNO3 – азотная кислота (соответствует кислотный оксид N2O5)
HNO2 – азотистая кислота (соответствует кислотный оксид N2O3)
H2SO4 – серная кислота (соответствует кислотный оксид SO3)
H2SO3 – сернистая кислота(соответствует кислотный оксид SO2)
H2CO3 – угольная кислота (соответствует кислотный оксид CO2)
H2SiO3 – кремниевая кислота(соответствует кислотный оксид SiO2)
H3PO4 – фосфорная кислота (соответствует кислотный оксид P2O5).

Соли – соединения, в состав которых входит катион металла (или аммония) и анион кислотного остатка.
По составу кислоты делятся на:
1. Средние – состоят из катиона металла и кислотного остатка – это продукт полного замещения атомов водорода кислоты на катионы металла (или аммония). Например, Na2SO4, K3PO4.
Соли фтороводородной кислоты – фториды,
соли хлороводородной кислоты – хлориды,
соли бромоводородной кислоты – бромиды,
соли йодоводородной кислоты – йодиды,
соли сероводородной кислоты – сульфиды,
соли азотной кислоты – нитраты,
соли азотистой кислоты – нитриты,
соли серной кислоты – сульфаты,
соли сернистой кислоты – сульфиты,
соли угольной кислоты – карбонаты,
соли кремниевой кислоты – силикаты,
соли фосфорной кислоты – фосфаты.
2. Кислые соли – состоят из катиона металла (или аммония), катиона (-ов)водорода и аниона кислотного остатка – это продукт неполного замещения атомов водорода кислоты на катионы металла. Кислые соли могут образовывать только двух- и трёхосновные кислоты. К названию соли добавляется приставка гидро- (или дигдро). Например, NaHSO4 (гидросульфат натрия), KH2PO4 (дигидрофосфат калия).
3. Основные соли – состоят из катиона металла (или аммония), гидроксиданиона и аниона кислотного остатка – это продукт неполного замещения гидроксильных групп основания на кислотные остатки. Основные соли могут образовывать только двух- и трёхкислотные основания. К названию соли добавляется приставка гидроксо-. Например, (CuOH)2CO3 – гидроксокарбонат меди (II).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: