Cвойства металлов – механические и химические, прочность, свойства

Механические, физические, химические и технологические свойства металлов

Механические свойства характеризуют способность материа­лов сопротивляться действию внешних сил. К основным механичес­ким свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

Прочность — это способность материала сопротивляться раз­рушающему воздействию внешних сил.

Твердость — это способность материала сопротивляться вне­дрению в него другого, более твердого тела под действием нагрузки.

Вязкостью называется свойство материала сопротивляться раз­рушению под действием динамических нагрузок.

Упругость — это свойство материалов восстанавливать свои раз­меры и форму после прекращения действия нагрузки.

Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

Хрупкость — это свойство материалов разрушаться под дей­ствием внешних сил без остаточных деформаций.

При статических испытаниях на растяжение определяют вели­чины, характеризующие прочность, пластичность и упругость мате­риала. Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l и диа­метром d. Образец растягивается под действием приложенной силы Р (рис. 1, а) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ — это отношение силы Р к площади поперечного сечения F, МПа:

Деформация характеризует изменение размеров образца под дей­ствием нагрузки, %:

где l1 — длина растянутого образца.

Деформация может быть упру­гой (исчезающей после снятия нагрузки) и пластической (остаю­щейся после снятия нагрузки).

При испытаниях стоится диаграмма растяжения, представляющая собой зависимость напряжения от деформации. На рис. 1 приведена такая диаграмма для низкоуглеродистой стали. После проведения ис­пытаний определяются следующие характеристики механических свойств.

Предел упругости σу — это максимальное напряжение при кото­ром в образце не возникают пластические деформации.

Предел текучести σт — это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 1). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 — напряжение, вызывающее пластическую деформацию, равную 0,2 %. Предел прочности (или временное сопротивление) σв — это на­пряжение, отвечающее максимальной нагрузке, которую выдержи­вает образец при испытании.

Относительное удлинение после разрыва δ — отношение при­ращения длины образца при растяжении к начальной длине l, %:

где lк — длина образца после разрыва.

Рис. 1. Статические испытания на растяжение: а – схема испытания;

б – диаграмма растяжения

Относительным сужением после разрыва ψ называется умень­шение площади поперечного сечения образца, отнесенное к началь­ному сечению образца, %:

где Fк — площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение характеризуют пластичность материала.

Твердость металлов измеряется путем вдавливания в испытуе­мый образец твердого наконечника различной формы.

Метод Бринелля основан на вдавливании в поверхность металла стального закаленного шарика под действием определенной нагрузки. После снятия нагрузки в образце остается отпечаток. Число твердо­сти по Бринеллю НВ определяется отношением нагрузки, действую­щей на шарик, к площади поверхности полученного отпечатка.

Метод Роквелла основан на вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120° (шкалы А и С). Вдавли­вание производится под действием двух нагрузок — предваритель­ной равной 100 Н и окончательной равной 600, 1000. 1500 Н для шкал А, В и С соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания.

В методе Виккерса применяют вдавливание алмазной четырех­гранной пирамиды с углом при вершине 136°. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Ударная вязкость определяется работой A, затраченной на разрушение образца, отнесенной к площади его поперечною сече­ния F; Дж/м 2 :

Испытания проводятся ударом специального маятникового коп­ра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

К физическим свойствам материалов относится плотность, тем­пература плавления, электропроводность, теплопроводность, магнит­ные свойства, коэффициент температурного расширения и др.

Плотностью называется отношение массы однородного матери­ала к единице его объема.

Это свойство важно при использовании материалов в авиационной и ракетной технике, где создаваемые кон­струкции должны быть легкими и прочными.

Температура плавления — это такая температура, при которой металл переходит из твердого состояния в жидкое. Чем ниже температура плавления металла, тем легче протекают процессы его плав­ления, сварки и тем они дешевле.

Электропроводностью называется способность материала хоро­шо и без потерь на выделение тепла проводить электрический ток. Хорошей электропроводностью обладают металлы и их сплавы, осо­бенно медь и алюминий. Большинство неметаллических материалов не способны проводить электрический ток, что также является важ­ным свойством, используемом в электроизоляционных материалах.

Теплопроводность — это способность материала переносить теплоту от более нагретых частей тел к менее нагретым. Хорошей теплопроводностью характеризуются металлические материалы.

Магнитными свойствами т.е. способностью хорошо намагничи­ваться обладают только железо, никель, кобальт и их сплавы.

Коэффициенты линейного и объемного расширения характеризу­ют способность материала расширяться при нагревании. Это свой­ство важно учитывать при строительстве мостов, прокладке желез­нодорожных и трамвайных путей и т.д.

Читайте также:
Аморфные вещества определение, строение, общая характеристика, химические и физические свойства, отличия от твердых тел, способы и примеры применения

Химические свойства характеризуют склонность материалов к взаимодействию с различными веществами и связаны со способнос­тью материалов противостоять вредному действию этих веществ. Способность металлов и сплавов сопротивляться действию различ­ных агрессивных сред называется коррозионной стойкостью, а аналогичная способность неметаллических материалов — химической стойкостью.

К эксплуатационным (служебным) свойствам относятся жаро­стойкость, жаропрочность, износостойкость, радиационная стойкость, коррозионная и химическая стойкость и др.

Жаростойкость характеризует способность металлического ма­териала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность характеризует способность материала сохранять механические свойства при высокой температуре.

Износостойкость — это способность материала сопротивлять­ся разрушению его поверхностных слоев при трении.

Радиационная стойкость характеризует способность материала сопротивляться действию ядерного облучения.

Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства харак­теризуются способностью металлов и сплавов в расплавленном состоя­нии хорошо заполнять полость литейной формы и точно воспроизво­дить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различ­ным видам обработки давлением без разрушения. Свариваемость опре­деляется способностью материалов образовывать прочные сварные сое­динения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

Теория сплавов

Металлическим сплавом называется материал, полученный сплавлением двух или более металлов или металлов с неметаллами, обла­дающий металлическими свойствами. Вещества, которые образуют сплав называются компонентами.

Фазой называют однородную часть сплава, характеризующуюся определенными составом и строением и отделенную от других частей сплава поверхностью раздела. Под структурой понимают форму размер и характер взаимного распо­ложения фаз в металлах и сплавах. Структурными составляющими называют обособленные части сплава, имеющие одинаковое строе­ние с присущими им характерными особенностями.

Виды сплавов по структуре. По характеру взаимодействия ком­понентов все сплавы подразделяются на три основных типа: механи­ческие смеси, химические соединения и твердые растворы.

Механическая смесь двух компонентов А и В образуется, если они не способны к взаимодействию или взаимному растворению. Каждый компонент при этом кристаллизуется в свою кристалличес­кую решетку. Структура механических смесей неоднородная, состо­ящая из отдельных зерен компонента А и компонента В. Свойства механических смесей зависят от количественного соотношения ком­понентов: чем больше в сплаве данного компонента, тем ближе к его свойствам свойства смеси.

Химическое соединение образуется когда компоненты сплава А и В вступают в химическое взаимодействие. При этом при этом соотношение чисел атомов в соединении соответствует его химичес­кой формуле АmВn . Химическое соединение имеет свою кристалли­ческую решетку, которая отличается от кристаллических решеток компонентов. Химические соединения имеют однородную структу­ру, состоящую из одинаковых по составу и свойствам зерен.

При образовании твердого раствора атомы одного компонента входят в кристаллическую решетку другого. Твердые растворы заме­щения образуются в результате частичного замещения атомов крис­таллической решетки одного компонента атомами второго (рис. 6, б).

Твердые растворы внедрения образуются когда атомы растворенного компонента внедряются в кристаллическую решетку компонента -растворителя (рис. 6, в). Твердый раствор имеет однородную струк­туру, одну кристаллическую решетку. В отличие от химического соединения твердый раствор существует не при строго определен­ном соотношении компонентов, а в интервале концентраций. Обо­значают твердые растворы строчными буквами греческого алфавита: α, β, γ, δ и т. д.

Диаграмма состояния

Диаграмма состояния показывает строе­ние сплава в зависимости от соотношения компонентов и от темпера­туры. Она строится экспериментально по кривым охлаждения спла­вов (рис. 8). В отличие от чистых металлов сплавы кристаллизуются не при постоянной температуре, а в интервале температур. Поэтому на кривых охлаждения сплавов имеется две критические точки. В верхней критической точке, называемой точкой ликвидус (tл), начина­ется кристаллизация. В нижней критической точке, которая называ­ется точкой солидус (tc), кристаллизация завершается. Кривая охлаж­дения механической смеси (рис. 8, а) отличается от кривой охлаждения твердого раствора (рис. 8, б) наличием горизонтального участка. На этом участке происходит кристаллизация эвтектики.

Эвтектикой на­зывают механическую смесь двух фаз, одновременно кристаллизовав­шихся из жидкого сплава. Эвтектика имеет определенный химичес­кий состав и образуется при постоянной температуре.

Диаграмму состояния строят в координатах температура-концен­трация. Линии диаграммы разграничивают области одинаковых фазо­вых состояний. Вид диаграммы зависит от того, как взаимодейству­ют между собой компоненты. Для построения диаграммы состояния используют большое количество кривых охлаждения для сплавов раз­личных концентраций. При построении диаграммы критические точ­ки переносятся с кривых охлаждения на диаграмму и соединяются линией. В получившихся на диаграмме областях записывают фазы или структурные составляющие. Линия диаграммы состояния на ко­торой при охлаждении начинается кристаллизация сплава называется линией ликвидус, а линия на которой кристаллизация завершается — линией солидус.

Виды диаграмм состояния

Диаграмма состояния сплавов, обра­зующих механические смеси (рис. 9), характеризуется отсутствием растворения компонентов в твердом состоянии. Поэтому в этом спла­ве возможно образование трех фаз: жидкого сплава Ж, кристаллов А и кристаллов В. Линия АСВ диаграммы является линией ликвидус: на участке АС при охлаждении начинается кристаллизация компонента А, а на участке СD — компонента В. Линия DСВ является линией солидус, на ней завершается кристаллизация А или В и при постоян­ной температуре происходит кристаллизация эвтектики Э. Сплавы концентрация которых соответствует точке С диаграммы называются эвтектическими, их структура представляет собой чистую эвтектику.

Читайте также:
Серебро химический элемент история открытия металла, электронная формула, обозначение в таблице Менделеева, физические и химические свойства, крупные месторождения серебра, способы применения

Сплавы, расположенные на диаграмме левее эвтектического, называ­ются доэвтектическими, их структура состоит из зерен А и эвтекти­ки. Те сплавы которые на диаграмме расположены правее эвтектичес­кого, называются заэвтектическими, их структура представляет собой зерна В, окруженные эвтектикой.

Диаграмма состояния сплавов с неограниченной растворимос­тью компонентов в твердом состоянии изображена на рис. 10. Для этого сплава возможно образование двух фаз: жидкого сплава и твер­дого раствора а. На диаграмме имеется всего две линии, верхняя является линией ликвидус, а нижняя — линией солидус.

Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии показана на рис 11. В этом сплаве могут существовать три фазы — жидкий сплав, твердый раствор α компонента В в компоненте А и твердый раствор β компонента А в компоненте В. Данная диаграмма содержит в себе элементы двух пре­дыдущих. Линия АСВ является линией ликвидус, линия АDСЕВ — линией солидус. Здесь также образуется эвтектика, имеются эвтек­тический, доэвтектический и заэвтектический сплавы. По линиям FD и EG происходит выделение вторичных кристаллов αIIи βII(вслед­ствие уменьшения растворимости с понижением температуры). Про­цесс выделения вторичных кристаллов из твердой фазы называется вторичной кристаллизацией.

Диаграмма состояния сплавов, образующих химическое соеди­нение (рис. 12) характеризуется наличием вертикальной линии, соот­ветствующей соотношением компонентов в химическом соединении АmВn. Эта линия делит диаграмму на две части, которые можно рас­сматривать как самостоятельные диаграммы сплавов, образуемых одним из компонентов с химическим соединением. На рис. 12 изоб­ражена диаграмма для случая, когда каждый из компонентов образу­ет с химическим соединением механическую смесь.

Характеристика физических и химических свойств металлов

Занимая в таблице Менделеева I-II группы, а также побочные подгруппы III-VIII групп, атомы металлов способны отдавать валентные электроны, тем самым окисляться. По группе сверху вниз число электронных слоев увеличивается, радиус атомов растет, как и способность отдавать электроны (металлические свойства атомов). В периодах слева направо радиус атомов уменьшается, металлические свойства снижаются. Поэтому самыми активными металлами в периодах являются металлы I-II групп.

Физические и химические свойства металлов

Своими физическими, как и химическими, свойствами металлы обязаны строению кристаллической решетки. Она состоит из положительно заряженных ионов, которые постоянно колеблются вокруг определенного положения равновесия. Кроме того, имеются свободные электроны, которые перемещаются по всему объему. Именно благодаря им, для металлов характерны следующие свойства: металлический блеск, ковкость, пластичность, тепло- и электропроводность.

Из металлов изготавливают детали и инструменты, корпуса машин, зеркала, бытовую и промышленную химию.

Такое широкое применение на практике металлы нашли благодаря своим особым свойствам:

  1. Пластичность. Могут легко менять свою форму в нужном направлении, от вытягивания в проволоку до прокатывания в листы.
  2. Характерный блеск и отсутствие прозрачности. Объяснение этому свойству кроется во взаимодействии электронов с падающим на поверхность светом.
  3. Электропроводность. При появлении разности потенциалов движение свободных электронов становится направленным: от отрицательного полюса к положительному. Электропроводность металлов уменьшается с повышением температуры. Происходит это по причине усиления интенсивности колебаний атомов и ионов в узлах кристаллической решетки, что значительно затрудняет осуществление направленного движения частиц.
  4. Теплопроводность. Свободные электроны очень подвижны. Поэтому наблюдается быстрое выравнивание температуры по всей массе металлического тела. Наибольшей теплопроводностью обладают висмут и ртуть.
  5. Твердость. Благодаря такому свойству, металлы нашли применение для изготовления режущих инструментов. Самым твердым металлом является хром, самыми мягкими являются металлы щелочной группы (рубидий, цезий, калий, натрий, литий). Их можно резать обычным ножом. Твердость металла можно определить по специальной шкале Мооса, для металлов эта характеристика находится в интервале от 0,2 до 6,0.
  6. Плотность. Значение плотности зависит от массы и радиуса атома. Самым легким является литий, самым тяжелым — осмий. Для сравнения, их плотность равна 0,53 г/см3 и 22,6 г/см3 соответственно. Если плотность металла менее 5 г/см3, то он относится к группе легких.
  7. Температура плавления. Существует металлы легкоплавкие, к примеру, ртуть, и тугоплавкие, например, вольфрам. В целом, те металлы, которые имеют температуру плавления более 1000оС, отнесены к тугоплавким. Те, для которых она ниже, считаются низкоплавкими.
Подробное описание механических свойств

Механические свойства металлов не определяются расчетным путем. Для них существуют специальные экспериментальные процедуры, в ходе которых проверяется степень деформации, характер прочности, способность к пластичности и т.д.

К основным механическим свойствам относят:

  1. Прочность. Когда говорят, что металл прочен, понимают, что под действием механических факторов он способен сохранять свою кристаллическую структуру. Среди таких факторов числятся: статические (нагрузка в статике), динамические (нагрузка в движении), ударные. Чем выше прочность испытуемого металла, тем конструкция из него будет долговечнее. Это особенно важно в отраслях промышленности, изготавливающих оборудование для использования в жизни людей.
  2. Пластичность. В нуждах производства либо быта часто нужна металлическая пластичность. Это способность металла либо сплавов с его участием изменять свою геометрию, увеличиваться либо уменьшаться в объеме. Такое видоизменение не должно разрушить нормальную кристаллическую решетку.
  3. Твердость. Металлические конструкции почти невозможно повредить либо изменить руками. И все же ощущения от надавливания на алюминий либо железо будут различными. Испытать твердость можно с помощью прибора Бриннеля (как вариант, изобретения Ровелла). Прибор Бриннеля подразумевает определение твердости путем вдавливания в образец металла шара сильной закалки. В изобретении Ровелла используется алмазная пирамида.
Читайте также:
Фосфорная кислота - формула, характеристика, получение и применение

Размер следа, возникшего при давлении, позволяет установить твердость исследуемого состава.

Важно обратить внимание на то, что понятие «прочность» не является синонимом «твердости». Не редки варианты, когда твердые предметы являются хрупкими.

  1. Ударная вязкость. Свойство свидетельствует о способности тела противостоять ударам. Единицей измерения является джоуль на см3.
  2. Упругость. На твердое тело могут воздействовать различные силы, в т.ч. вызывающие его деформацию. Упругие материалы способны по окончании воздействия силы восстанавливать свою форму. Это также можно объяснить особенностями строения кристаллической решетки.

К механическим свойствам металлов, например, железа, практики относят также такие характеристики, как наличие надежности, долговечности, практичности, живучести.

Эксплуатационные характеристики

Кроме общих физических свойств, металлы обладают такой особенностью, как эксплуатационные характеристики. Под этим понятием понимается показатель, демонстрирующий надежность, долговечность и практичность детали, конструкции, изготовленной из металла либо его сплава. Такой показатель формируется на основании обобщения результатов технических испытаний, разнопрофильных замеров.

К такой категории показателей относят жаропрочность, хладостойкость, стойкость к коррозии, антифрикционные характеристики, циклическая вязкость и т.п.

Под «износостойкостью» понимают способность материала, из которого изготовлены различные конструкции, противостоять абразивному износу, в т.ч. при наличии процессов трения поверхностей деталей (инструментов) при работе.

Группа металлов с циклической вязкостью способны выдерживать знакопеременные динамические давления. При этом они не разрушаются. Детали, изготовленные из таких металлов, — идеальный вариант для изготовления рессор автомобилей, пружин различных вариаций. Детали, изготовленные из металлов с циклической вязкостью, способны функционировать в неблагоприятных условиях длительные отрезки времени.

Определение понятия «Демпфирование» гласит, что металл способен гасить колебания, рассеивать их, а также противостоять направленным нагрузкам. К таким материалам относят серые литейные чугуны. Они годны для изготовления станин станков, кронштейнов и т.п.

Одной из общих эксплуатационных характеристик является жаропрочность. Краткое описание сводится к способности материалов выдерживать серьезные механические нагрузки, особенно при высоких температурах. Показатель жаропрочности определяется тугоплавкостью химических веществ. Для современных двигателей такая характеристика очень важна. В ходе самого процесса происходит ослабление химических связей, поэтому снижаются упругость, вязкость, твердость. В результате этого деталь постепенно приходит в негодность. Если в не жаропрочные углеродистые стали добавить в определенных количествах алюминий (магний, титан), они повысят жаропрочность до 600оС. Если же в состав материала вводить никель (кобальт), он будет устойчив вплоть до 1000оС.

Жаростойкость характеризует способность металла не подвергаться коррозии. Насколько велика жаростойкость, можно определить по глубине коррозии. Высокой устойчивостью обладают легированные стали, чугуны, сплавы с хромом, никелем, вольфрамом, ванадием. Эти элементы проявляют жаростойкость при 800-1000оС и выше.

Хладностойкость показывает, насколько материал может сохранить вязкость при отрицательных температурах.

Антифрикционность является свойством, показывающим, насколько материал способен снизить трение между соприкасающимися поверхностями в механизмах и деталях. Антифрикционные материалы используют для изготовления подшипников для различных механизмов.

Прирабатываемость — возможность конструкций, изготовленных из определенных материалов, «подстраиваться» в рабочем процессе, например, увеличивать площадь соприкосновения, уменьшать температуру поверхности или давление на нее.

Таблица, примеры

Физические свойства металлов изучались давно и серьезно. Сегодня существуют различные таблицы, содержащие обобщенные данные о химических свойствах, механических и эксплуатационных характеристиках. Например, в электрохимическом ряду напряжения металлов они расположены в порядке уменьшения своей восстановительной способности.

Прочие свойства металлов отражены в таблице.

ρ 5000 кг/м3 – тяжелые металлы: Zn, Fe, Ni, Cr, Pb, Ag, Au, Os

Самый легкий металл — литий:

ρ = 530 кг/м3;

самый тяжелый — осмий:

ρ = 22600 кг/м3

Твердость некоторых металлов по шкале Мооса:

Самые мягкие металлы: K, Rb, Cs, Na

самый твердый металл — Cr (режет стекло)

Au, Ag, Cu, Sn, Pb, Zn, Fe

В ряду наблюдается уменьшение пластичности

Из пластичного золота можно изготовить фольгу толщиной

Тпл > 1000°С – тугоплавкие металлы: Au, Cu, Ni, Fe, Pt, Ta, Nb, Mo, W;

Существуют таблицы, которые связывают общие физические свойства и электронное строение их атомов, а также положение в таблице Д.И.Менделеева.

Свойства металлов – общие химические и физические свойства

Физические и химические качества

При перемещении в таблице Менделеева слева направо увеличивается число электронов на внешнем уровне, при этом происходит усиление окислительных свойств. Также все металлы подвержены коррозии. Способность противостоять коррозии — это и есть коррозионная стойкость. К физическим свойствам относятся:

  1. Плавление.
  2. Плотность.
  3. Теплопроводность.
  4. Тепловое расширение.
  5. Электропроводность.
Читайте также:
Пероксид водорода - формула, свойства, способы получения

Количество вещества, содержащееся в единице объёма материала, называется плотностью или удельным весом.

Чем меньше удельный вес, тем легче материал.

Лёгкими считаются алюминий, олово, магний, титан. Тяжёлыми являются более 40 существующих в природе элементов. Это хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьма, теллур, вольфрам, ртуть, таллий, свинец, висмут.

Способность металла переходить из твёрдого состояния в жидкое называется плавлением. Все материалы имеют разные температуры плавления. Некоторые сплавы — тугоплавкие, другие тягучие и легко превращаются в жидкую массу под действием высоких температур. Теплопроводность характеризует скорость проведения тепла при нагревании. Проводя сравнение с другими материалами, можно заметить, что металлы имеют хорошую теплопроводность. В отличие от диэлектриков металлические сплавы проводят электрический ток, но некоторые из них делают это лучше, некоторые почему-то хуже. Такая способность называется электропроводностью или токопроводимостью и зависит от строения кристаллической решётки. Хорошо проводят ток серебро, медь, золото, алюминий и железо. Эти металлы довольно широко распространены в приборостроении и электротехнической промышленности.

Возможность увеличения объёма при нагревании называется тепловым расширением.

Подробное описание механических свойств

Помимо твёрдости, важной характеристикой является прочность. Это способность оказывать сопротивление разрушению под действием каких-либо других внешних сил. При быстром возрастании нагрузки при ударе очень важна вязкость материала — это способность сопротивляться ударным нагрузкам. Металл обладает таким свойством, как упругость. Эта характеристика позволяет вернуть первоначальную форму и размер после того, как действующая сила будет устранена. Следующие понятие — пластичность. Под этим термином понимают способность металла менять форму под внешним воздействием и возвращаться в изначальное состояние, после того как это воздействие будет снято.

Эксплуатационные характеристики

Две поверхности из металлических сплавов при нагревании можно прочно соединять друг с другом, такая способность называется свариваемостью.

Важная характеристика расплавленного металла называется текучестью. Она характеризует способность материала растекаться по заготовленной форме. Каждый металл может подвергаться закалке на определённую глубину. Это свойство называется прокаливаемость. К основным операциям на производстве для получения заготовок относится обработка режущими инструментами. Подверженность к обработке резанием — ещё одно свойство металлических соединений.

Металлы-рекордсмены

Наиболее мягкими минералами считаются алюминий, серебро и медь. Они нашли широкое применение в различных областях, например, в электроаппаратостроении, из-за своих характеристик, так как легко поддаются обработке. Следует перечислить и другие мягкие металлы: это калий, натрий, рубидий, цезий. А какой самый пластичный металл? Все рекорды бьёт золото. На втором месте в этом списке стоит свинец. Кроме пластичности, золото обладает хорошей тягучестью и ковкостью и является лидером в списке тягучих металлов. В чистом виде оно имеет ярко-жёлтый цвет, обладает высокой теплопроводностью, влагоустойчивостью и не окисляется при нормальной температуре. Плёнка из окиси образуется только при нагревании до 100 °C. Золотые слитки ярко блестят. За счёт своих удобных для обработки физических свойств получили широкое применение для ювелирных украшений.

Ещё один уникальный химический элемент — ртуть. В природе не бывает её твёрдого состояния, так как температура плавления ртути составляет -38 °C, испарение происходит при комнатной температуре, равной 18 °C, а кипение происходит уже при 356 °C. Магнитные свойства отсутствуют: обычным магнитом ртуть не собрать. Химически она неактивна, взаимодействует с солями и неметаллами. С водой, кислотами и щелочами ртуть не взаимодействует. Область применения:

  • в медицине (термометры);
  • в научных целях (барометры, вакуумные насосы, манометры);
  • электрохимическое производство (ртутные выпрямители электрического тока) и др.

Самым тугоплавким был признан вольфрам с температурой плавления +3420 °C. В электрических лампочках нити накаливания изготовлены именно из него. А самый тугоплавкий сплав состоит из карбидов гафния и тантала. В промышленности металлы в основном применяются в виде сплавов и делятся на чёрные и цветные. Первая группа включает в себя сплавы железа с углеродом. В зависимости от содержания углерода они подразделяются на сталь и чугун. В цветной металлургии широкое применение получили:

  • медь;
  • алюминий;
  • олово;
  • свинец;
  • цинк;
  • магний;
  • вольфрам;
  • титан и др.

В процессе развития химии люди научились делать более прочные сплавы. При помощи современных технологий можно создать ещё более прочные конструктивы на основе общих сравнительных характеристик.

Свойства металлов – химические, физические, механические

Когда-то пресловутая фраза «люди гибнут за сталь» была символом важности данного материала в жизни людей. Да и сегодня он не потерял своей актуальности. Он активно используется в самых разных областях жизнедеятельности человека, начиная со строительства и производства высокотехнологичных изделий, заканчивая предметами роскоши и украшениями. По этой причине свойства интенсивно исследовались и сейчас изучаются ведущими умами и крупнейшими корпорациями.

Читайте также:
Аллотропные модификации - формы, причины видоизменения

Что же это такое?

На сегодняшний день известно огромное количество различных металлов. Каждый из них обладает определенными характеристиками, отличающим его от других химических элементов или материалов. Может ли стекло быть прочнее стали? Кажется вопрос глупый и ответ на него более чем однозначный – нет. Но те, кто думает, что стекло материал хрупкий, ошибаются и не знают современных технологий сжатия стекла, которые делают его в 7 раз крепче стали. Поэтому, если выбираете стеклянные банки от производителя, стоит об этом знать.

Однако существуют определенные признаки, которые однозначно говорят, что мы имеем дело с металлическим компонентом:

  1. Высокая теплопроводность и низкое электрическое сопротивление. Другие составы не обладают таким сочетанием. К примеру, графит проводит электричество, но не тепло.
  2. Присутствие блеска в области излома.
  3. Подверженность ковке.
  4. Кристаллы в структуре.

Какие виды встречаются?

Свойства металлов во многом зависят от того, к какому виду тот или иной ингредиент относится. В этом ракурсе стоит выделить черные и цветные компоненты.

Чермет

Данная группа считается самой распространенной и востребованной в объемном ракурсе. Свое название они получили благодаря своему цвету – темному. При этом отличительной особенностью черных руд считается низкая стоимость.

В свою очередь, классифицируется на:

  • железные – сюда стоит отнести железосодержащие материалы и основы, а также никелевые и кобальтовые сплавы;
  • тугоплавкие основания для сплавов (имеют температуру плавления равную или превышающую 1600 градусов Цельсия, что является достаточно высоким показателем);
  • низкопрочностные редкоземельные элементы, такие как церий, неодим и другие (активно используются в производстве микроэлектроники).

Цветмет

Принято считать, что эта группа элементов отличается меньшими прочностными характеристиками, температурой плавления, устойчивостью к механическим нагрузкам, но более солидной стоимостью. Понятно, что по всем этим позициям встречаются исключения.

Цветные ранжируют на следующие категории:

  1. Легкие – литий, натрий и так далее. Они характеризуются небольшой плотностью – до 5 тонн на метр кубический. Это всего в 5 раз больше воды.
  2. Тяжелые – свинец, серебро, золото. Их плотность в разы выше легких.
  3. Благородные – те же золото и серебро, а также платина, плутоний.

Также поделить «цветные» разновидности можно на тугоплавкие и легкоплавкие.

Сплавы – основная форма представления

В чистом виде подобного рода элементы в природе и жизнедеятельности человека не встречаются. Да и без примесей они не просто неустойчивы, но бесполезны. Даже золотые и серебряные мерные слитки в банках имеют определенный процент добавок, в том числе и для увеличения прочностных характеристик. Кстати, они в буквальном смысле меняются кардинальным образом от варианта метсплава.

Физические свойства металлов


В данном случае речь идет о различных визуальных аспектах, а также параметрах, связанных с физикой. Можно привести сравнительную таблицу:

На практике знание физических свойств металла описывает сферу использования того или иного мономатериала. В частности, электропроводность определяет область применения в электронике, как вариант, германий – полупроводники, серебро – дорожки микросхем.

К физ. характеристикам также относят цветопередачу – зрительный параметр, который может изменяться под воздействием различных факторов, например, температуры или наличия-отсутствия защитного покрытия. Многие цвета, кстати, были названы в честь хим. элементов – золотой, серебристый, медный и так далее.

Химические свойства металлов


Таблица Менделеева на треть состоит из рассматриваемых в данной статье моноэлементов. С практической точки для обывателя, да и специалиста, эти аспекты определяют их взаимодействие с окружающими агрессивными средами, такими как реагенты из воздушной массы, влажность, перепады температурных показателей, как суточных, так и годовых.

В этом ракурсе металлопозиции утрировано разделяются на следующие группы:

  1. Активные. В качестве примеров можно привести литий, калий, барий, кальций, натрий.
  2. Среднеактивные – магний, алюминий, марганец, цинк, хром, железо, никель, серебро.
  3. Малоактивные. Речь идет о меди, золотых слитках, платине и иных инертных компонентах.

Соединение с простыми веществами

Самым популярным в мире соединением, которое формируется между двумя одинаковыми элементами – это, безусловно, оксид. Ярким примером, который считается весьма распространенным и не очень приятным с практической точки зрения, считается окись железа – ржавчина (каждый из нас сталкивался с коррозионными процессами):

2FE + O2 = 2FEO.

Важно знать, что благородные металлоэлементы, такие как серебро, золото и платина, оксиды в обычных условиях не образуют. Это и является одной из основных причин их высокой стоимости.

О взаимодействии с галогенами (фтором, хлором и другими позициями, которые присутствуют в окружающей среде) также не стоит забывать. Вариант: образование солей:

2Na + Cl2 = 2 NaCl.

Реакции со сложными соединениями

Здесь в первую очередь необходимо отметить взаимодействие щелочей с водой. Такие реакции всегда сопровождаются выделение водорода, что на практике чревато формированием взрывоопасной среды.

Среднеактивные также могут реагировать с H2O. Однако происходит это при достаточно высоких температурах, поэтому в обычных условиях повышения концентрации водорода не стоит.

Читайте также:
Химический элемент гелий электронная формула инертного газа, строение атома, химические и физические свойства, получение и применение

Механические свойства металлов

Данные сведения не рассматриваются как расчетные величины. Они определяются в процессе экспериментальных изысканий, в частности, деформации заготовок на растяжение и сжатие с применением специализированного оборудования.

Основными называют:

  1. Прочность. Под этим аспектом принято понимать способность сохранять кристалическую целостность под воздействием мех. нагрузок различного типа, как статических, так и динамических, в том числе ударного формата. Чем прочнее монометалл, тем он долговечнее в тех конструкциях, где материал подвергается серьезным перегрузкам. Особенно это бывает актуально в тех областях, где от прочностных показателей зависит жизнь и здоровье человека, например, на транспорте.
  2. Пластичность – характеристика, отражающая потенциал того или иного моноэлемента либо сплава под усилиями от внешних сил изменять свою геометрию и объем. При этом, опять же, физического разрушения кристаллической решетки не должно быть.
  3. Твердость. Понятно, что подавляющее большинство металлических брусков руками не проверишь – для железа и алюминия ощущения будут одинаковыми. Для этого используются специальные приспособления – приборы Бриннеля или изобретение Роквелла. В первом случае в образец пытаются «впихнуть» сильнозакаленный шар, во втором – алмазную пирамиду. По размеру следа от давления и устанавливается плотность того или иного состава.

Здесь важно понимать, что прочность и твердость – это разные механические свойства металлов, порой, даже не взаимозначимые. Твердые образцы могут быть хрупкими.

  1. Ударная вязкость. Как следует из названия речь идет о возможности противостоять нагрузкам при целенаправленных ударах. Измеряется в джоулях на сантиметр кубический.
  2. Упругость. Под действием различного рода сил образец изменяет свою форму и объем. Способность восстановить свои начальные параметры и определяют упругость.

Также к механике относятся конструкторские особенности ­– надежность, живучесть, долговечность.

Технологические характеристики

При оценке целесообразности выбора того или иного металла для решения конкретных практических, производственных задач, необходимо учитывать:

  • Ковкость. Под давлением производится обработка изделий. При этом полного разрушения не наблюдается, однако структура кристаллической решетки изменяется. В результате могут меняться механические, физические и даже химические факторы изделий.
  • Свариваемость. Возможность формирования сварных соединений с применением стандартных технологий.
  • Усадка – определяется соответствующим коэффициентом. При нагреве любой объект расширяется, после охлаждения – уменьшается. Так вот соотношение и определяет данное свойство. Кстати, далеко не всегда малое усадочное значение являет собой благо. К примеру, ртутные термометры работают именно за счет предельно большого коэффициента расширения.
  • Податливость режущим инструментам. С технологической точки зрения производственную ценность имеет только тот компонент, который можно сравнительно просто обработать или изготовить этот самый технический инструментарий.

Рассматриваемые направления характеризуют поведение уже готовых производственных изделий, товаров в процессе эксплуатации.

Таким образом, металлы – весьма распространенный материал, который активно используется в самых разных областях жизнедеятельности. Это обусловлено широкой вариативностью физических, химических, механических параметров продукции.

ЛЕКЦИЯ 4 СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Все свойства металлов и сплавов принято подразделять на группы: физические, химические, технологические, механические и эксплуатационные.

Физические свойства определяют поведение металлических материалов в тепловых, электромагнитных, радиационных полях. К физическим свойствам относятся плотность, температура плавления, теплоемкость, теплопроводность, электропроводность, магнитные характеристики, термическое расширение.

Химические свойства характеризуют способность материалов вступать в химическое взаимодействие с другими веществами и химическими элементами, а также способность металлов и сплавов сопротивляться воздействию агрессивных сред, в том числе окислению.

Технологические свойства характеризуют способность материалов подвергаться холодной и горячей обработке, в том числе при обработке резанием, ковке, сварке, литье. К технологическим свойствам относятся обрабатываемость резанием, свариваемость, ковкость, литейные свойства (жидкотекучесть – способность жидкого металла заполнять литейную форму; усадка – уменьшение объема металла при переходе из жидкого состояния в твердое; ликвация – химическая неоднородность в отливках; склонность к образованию трещин – вероятность образования литейных трещин и пор в процессе затвердевания в литейной форме).

К механическим свойствам относятся твердость, прочность, пластичность, упругость, вязкость.

Эксплуатационные свойства характеризуют поведение материала в заданных рабочих условиях. К эксплуатационным свойствам относятся жаропрочность, жаростойкость, хладноломкость, усталость, износостойкость.

Для выбора материала и оценки его длительной работоспособности и на-

дежности наиболее важными являются механические и эксплуатационные свойства. Поэтому именно эти группы свойств и методы их определения будут рассмотрены подробно.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Многообразие условий службы и обработки материалов определяет необходимость проведения большого числа механических испытаний с целью получения целого комплекса значений механических свойств.

В зависимости от способа нагружения образца различают статические, динамические и циклические испытания.

Рассмотрим основные механические свойства и их количественные характеристики.

ТВЕРДОСТЬ

Твердость – свойство материала сопротивляться воздействию внешних нагрузок при непосредственном соприкосновении.

Все методы измерения твердости имеют одинаковый принцип:

вдавливание в поверхность образца инородного тела (индентора) различной формы, размера с различной нагрузкой.

Различают следующие методы определения твердости:

Метод Бринелля (индентор – стальной шарик);

Читайте также:
Соединения железа - свойства, валентность железа в реакциях

Метод Роквелла (индентор – алмазный конус или стальной шарик);

Метод Виккерса (индентор – алмазная пирамидка).

Схемы этих методов приведены на рис. 4.1.

Рис. 4.1. Схема определения твердости:

а) – по Бринеллю; 6) – по Роквеллу; в) – по Виккерсу

Метод Бринелля

Испытание по методу Бринелля (рис. 4.1, а) состоит из вдавливания в

испытуемое тело стального шарика диаметром D под действием постоянной нагрузки Р ( Р=1000 кг — для цветных металлов; Р—3000 кг — для черных металлов) и измерении диаметра отпечатка d на поверхности образца. Число твердости по Бринеллю НВ определяется величиной нагрузки Р, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам, исходя из диаметра отпечатка d.

Твердость по Бринеллю обозначается НВ, где Н – твердость, В – метод Бринелля. Твердость по Бринеллю измеряется в МПа.

Метод Роквелла

Измерение твердости по этому методу проходит быстрее и удобнее, чем по методу Бринелля, так как значение твердости выводится на шкалу прибора.

При испытании по методу Роквелла (рис. 4.1, б) индентором служит алмазный конус или для более мягких материалов – стальной шарик. Конус и шарик вдавливаются в металл с различной нагрузкой. На приборе имеются три шкалы. При испытании алмазным конусом и нагрузке Р= 150 кг шкала обозначается С, а твердость обозначается HRC, при испытании алмазным конусом, но с нагрузкой Р = 60кг шкала обозначается A, а твердость – HRA, при испытании стальным шариком с нагрузкой 100кг шкала обозначается В, а твердость – HRB (таблица 4.1).

Свойства металлов и сплавов

Физические свойства материалов (их показатели):

  • • цвет;
  • • плотность;
  • • теплопроводность;
  • • температура плавления;
  • • электропроводность;
  • • магнетизм;
  • • расширение при нагревании.

К химическим свойствам материалов относится межатомное взаимодействие материала с другими веществами.

Механические свойства материалов:

  • • прочность;
  • • твердость;
  • • упругость;
  • • пластичность;
  • • вязкость.

Цвет металла (сплава) является одним из показателей, позволяющих судить о его свойствах. При нагревании металла по цвету поверхности можно примерно определить, до какой температуры он нагрет. Это используется при сварочных работах. Однако некоторые металлы (например, алюминий) при нагревании не изменяют цвет. Поверхность окисленного металла имеет иной цвет, чем неокисленного.

Плотность — отношение массы вещества к его объему. Плотность материала является одной из важнейших его характеристик, которая учитывается при проектировании, поскольку конструкции должны быть не только прочными, но и легкими.

Теплопроводность (теплообмен) — способность материала переносить тепловую энергию при неравномерном нагревании, имеет атомно-молекулярный характер, измеряется в Вт/(м • К).

Температура плавления — температура, при которой материал переходит из твердого состояния в жидкое. Чистые металлы имеют постоянную температуру плавления.

Электропроводность — способность вещества проводить постоянный электрический ток под действием не изменяющегося во времени электрического поля. Так как в автомобилях используются в основном металлические детали, электрическая сеть автомобилей выполняется по однопроводной схеме, вторым проводом является сам автомобиль, т. е. его «масса».

Магнитные свойства металлов широко используются в электрооборудовании автомобиля (генераторе, системе зажигания, электродвигателях, контрольно-измерительных приборах).

Способность металлов расширяться при нагревании — важное свойство, которое также учитывается при коструировании. Например, при сварке происходит местное нагревание лишь небольшого участка, и так как деталь в различных частях имеет не одинаковую температуру, то она деформируется. Детали, изготовленные из разных материалов, при нагревании расширяются по-разному. Это тоже может привести к деформациям и даже к разрушению конструкции.

Усадка — уменьшение объема расплавленного металла при его охлаждении. Вследствие усадки сварного шва, например, происходит коробление детали, появляются трещины или образуются усадочные раковины. Чем больше усадка, тем труднее получить качественное соединение.

Механические свойства материалов, как правило, являются основными показателями, которые определяют его пригодность в различных условиях эксплуатации.

Прочность — способность материала в определенных условиях и пределах не разрушаться, воспринимая те или иные воздействия (нагрузки, неравномерное нагревание, магнитные и электрические поля).

Твердость — способность материала сопротивляться местной пластической деформации, возникающей при внедрении в него более твердого тела.

Упругость — свойство тела восстанавливать свою форму и объем после прекращения действия внешней силы (нагрузки, нагревания). Большой упругостью, например, должны обладать рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность тела необратимо изменять форму (деформироваться) под действием механических нагрузок. Пластичность — свойство, обратное упругости. Чем больше пластичность металла, тем он легче куется, штампуется, прокатывается.

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали несущей системы, подвески, колес автомобилей).

Химические свойства металлов характеризуют их способность вступать в соединение с различными веществами (химическими элементами), и в первую очередь с кислородом. Чем легче металл вступает в соединение с различными химическими элементами, тем легче он разрушается. Разрушение металлов вследствие химического воздействия среды называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали: коррозионно- и кислотостойкие).

Читайте также:
Дихромат калия - свойства, особенности получения и применения

Совокупность физических, механических и химических свойств оказывает влияние на технологические свойства материала.

Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов создавать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно — другим. Например, дюралюминий хорошо сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литейную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла обрабатываться путем механической обработки (резание, фрезерование и т. д.), т. е. острым режущим инструментом (резцом, фрезой, ножовкой и т. д.).

Cвойства металлов – механические и химические, прочность, свойства

§ 2. Свойства металлов и сплавов

Свойства металлов и сплавов делятся на:

  1. физические;
  2. механические;
  3. технологические;
  4. химические.
Физические свойства

Цвет и блеск. Эти два свойства обусловливают в основном внешний вид металла и являются чрезвычайно существенными для художника. Этими свойствами характеризуются художественно-эстетические достоинства металлов как материалов, из которых создаются произведения искусства.

Каждый металл или сплав обладает определенным присущим ему цветом. Однако большинство из них имеет довольно однообразную гамму серовато-белых, серебристых тонов, то более теплых, то холодных. Исключение составляют два металла: золото, имеющее насыщенный желтый цвет, и медь, отличающаяся сильным оранжево-красным цветом. Добавка этих металлов в сплавы придает им желтые и красные оттенки. В табл. 1 приведены цвета наиболее распространенных в художественной промышленности металлов и сплавов.


Таблица 1

Часто готовые художественные изделия, выполненные из одних металлов, покрывают тонким слоем других, более эффективных по цвету или блеску металлов: например, золочение серебра и бронзы, хромирование и никелирование стали, серебрение меди и латуни и т. п.

Иногда для обогащения цвета применяют не сам металл, а его окислы или другие химические соединения. Такой прием носит название оксидирования или патинирования. Этим способом можно получить очень разнообразные по силе и яркости тона и значительно расширять цветовую палитру художника-металлиста. Оксидирование позволяет получить различные оттенки желтых, зеленых, синих, голубых, фиолетовых, красных, коричневых, черных цветов, весьма прочных и стойких против внешних условий.

Плотность. По плотности все металлы разделяются на легкие и тяжелые. Легкими принято называть металлы с плотностью до 3, а тяжелыми – с плотностью от 6 и выше.

В табл. 2 приведены плотности металлов и сплавов, наиболее часто применяемых в художественных изделиях.


Таблица 2

Плавкость, или температура плавления. Температуры плавления металлов и их сплавов находятся в огромных пределах. Например, некоторые легкоплавкие сплавы (сплав Вуда) плавятся уже при температуре 60°С, а наиболее тугоплавкий из металлов – вольфрам плавится только при 3380°С. Ртуть является примером металла, который при комнатной температуре находится в жидком состоянии. Она плавится при температуре минус 39°С.

По температурам плавления все металлы разделяются на легкоплавкие (температура плавления не превышает 700°С) и тугоплавкие – свыше 900°С.

В табл. 3 приведена температура плавления некоторых металлов в градусах Цельсия.


Таблица 3

Как видно из табл. 3, к легкоплавким металлам относятся: олово, свинец, цинк, кадмий, сурьма, алюминий, магний и их сплавы.

Легкоплавкие металлы идут для приготовления легкоплавких сплавов и мягких припоев.

К тугоплавким металлам относятся: серебро, золото, платина, медь, никель, марганец, железо, хром, вольфрам и др.

Механические свойства

Механические свойства имеют большое значение при конструировании и производстве изделий художественной промышленности.

Прочность, или крепость,- это свойство металлов выдерживать различные нагрузки не разрушаясь. Прочность – одно из важных свойств металлов. При проектировании художественных изделий выбор металлов и сплавов осуществляется с учетом их прочности.

Для точного определения и измерения прочности из металла или сплава изготовляют образец и подвергают его испытанию на специальной разрывной машине, которая постепенно, но с возрастающей силой растягивает образец до полного его разрыва.

Наибольшее напряжение, которое может выдержать образец металла не разрушаясь, называется пределом прочности для данного металла или временным сопротивлением разрыву.

Упругость – свойство металла принимать свою первоначальную форму после снятия нагрузки. При постепенном увеличении нагрузки на образец во время испытания его на разрывной машине он сначала вытягивается упруго, как резина или пружина. Если нагрузку снять, то образец снова сократится и примет свою первоначальную длину. Наибольшее напряжение металла, после которого он возвращается к своей первоначальной длине, называется пределом упругости.

Читайте также:
Качественные реакции на неорганические вещества и ионы характеристика

Если при дальнейшем повышении нагрузки напряжение превышает предел упругости и удлинение сохраняется после разгрузки образца, то такое состояние называют остаточным удлинением. Затем наступает предел текучести, при котором образец продолжает удлиняться без увеличения нагрузки – в этом случае металл “течет”. Такая способность к текучести используется в штамповочном производстве, особенно при глубокой вытяжке.

Наибольшей упругостью обладает хромоникелевая закаленная сталь. Алюминий и медь совершенно не обладают упругостью – даже при незначительной нагрузке они образуют остаточное удлинение, а не упругое.

Пластичность – свойство металла изменять свою форму под действием силы, не проявляя признаков разрушения (трещин, разрывов и т. п.), и сохранять полученную форму после снятия нагрузки. Это свойство также определяется и измеряется на разрывной машине.

Пластичность металла характеризуется удлинением образца за время испытания. Для определения степени пластичности пользуются следующим приемом: после разрыва образца складывают его части и измеряют общую их длину. Отношение приращения длины к его первоначальной длине, выраженное в процентах, является показателем пластичности металла и называется относительным удлинением. Это свойство металлов имеет большое значение в давильном и штамповочном производстве, а также при дифовке, чеканке, прокатке и волочении. Высокой пластичностью обладают драгоценные металлы – золото, серебро, платина и их сплавы; не менее пластичны медь и свинец. Почти совершенно отсутствует это свойство у чугуна, сурьмы и некоторых других металлов.

Твердость – свойство металлов сопротивляться проникновению в них другого тела под действием внешней нагрузки. От этого свойства зависит возможность обработки металлов тем или иным инструментом. Например, при обработке резанием на станках важно знать твердость обрабатываемого металла, чтобы подобрать соответствующий резец, сверло или фрезу.

Для определения твердости существует несколько способов и специальных приборов. Наиболее распространенные и общепринятые следующие.

Способ Бринелля. Определение твердости этим способом заключается в том, что в испытуемый металл при помощи специального пресса вдавливается определенной нагрузкой стальной закаленный шарик. От давления шарика на металле образуется лунка, отпечаток. Чем мягче металл, тем площадь лунки больше. Диаметр лунки определяется мерительной лупой, а затем в специальной таблице находят число твердости по Бринеллю.

В табл. 4 приведены числа твердости по Бринеллю для некоторых металлов.


Таблица 4

Способ Роквелла. Определение твердости этим способом производится тоже путем вдавливания в металл алмазной призмы или стального шарика, но отсчет ведется не по площади, а по разнице глубины отпечатка между глубиной от стандартной нагрузки, равной 10 кг, и заданной.

Измерение производят специальным прибором – индикатором, и число твердости показывает сам прибор.

Способ Шора. Измерение по этому способу производится при помощи специального прибора – склероскопа. При этом стальной боек падает на испытуемый металл с определенной высоты. Твердость металла характеризуется высотой, на которую отскакивает боек. Чем тверже металл, тем больше высота отскока. Этот способ удобен тем, что он не портит поверхности и может применяться к готовым изделиям художественной промышленности.

Выносливость – свойство металлов выдерживать не разрушаясь большое количество повторяющихся переменных нагрузок.

Все механические свойства значительно изменяются в зависимости от температурных условий. Так, например, прочность всех металлов при нагреве понижается, а пластичность в большинстве случаев увеличивается.

Изменение свойств металлов в условиях пониженных температур изучено еще недостаточно. Однако хорошо известно, что на холоде у некоторых металлов резко падает пластичность и они становятся хрупкими. С этой точки зрения все металлы делятся на три группы:

  1. хладоломкие – сталь некоторых марок, цинк и его сплавы;
  2. нехладоломкие – медь, алюминий;
  3. хрупкие – металлы, обладающие хрупкостью и при нормальных условиях, например серый чугун.
Технологические свойства

При выборе металла или сплава для производства художественных изделий кроме физических и механических свойств учитывают и технологические свойства, т. е. способность металлов обрабатываться различными приемами и методами без особых затруднений.

Наиболее существенными являются следующие свойства.

Жидкотекучесть – свойство, обеспечивающее хорошее заполнение формы расплавленным металлом. Величина жидкотекучести зависит от атомного веса, температуры плавления, степени поверхностного натяжения и других показателей.

Металлы и сплавы, обладающие высокой жидкотекучестью, позволяют получать высокохудожественные отливки. Они легко заполняют мельчайшие детали форм и хорошо передают все детали модели, включая и фактуру поверхности. Хорошей жидкотекучестью обладают следующие металлы и сплавы: цинк и его сплавы, чугун, бронза, олово, силумин (сплав алюминия с кремнием), а также некоторые магниевые сплавы и литейные латуни.

Существует понятие, обратное жидкотекучести,- густоплавкость. Металлы и сплавы, обладающие густоплавкостью, даже при высоком нагреве остаются густыми и при заливке форм плохо их заполняют. К густоплавким относятся чистое серебро, красная медь, сталь.

Литейная усадка – уменьшение объема при переходе из жидкого состояния в твердое. При охлаждении металла отливка сокращается и как бы отходит от стенок формы. Отливка всегда меньше модели, по которой сделана форма. Величина усадки бывает различной. Металлы и сплавы с большой усадкой менее применимы для литья.

Читайте также:
Соединения железа - свойства, валентность железа в реакциях

В табл. 5 приведены литейные усадки некоторых металлов и сплавов.


Таблица 5

Зная величину литейной усадки, можно определить, насколько больше следует изготовить форму, чтобы получить отливку нужного размера.

Ковкость – свойство металла изменять свою форму под действием ударов или давления не разрушаясь. Степень ковкости зависит от многих параметров. Наиболее существенными из них являются следующие: пластичность, степень нагрева, величина деформирующего усилия, наличие примесей и др.

Металлы могут коваться как в холодном состоянии, например красная медь, золото, так и в горячем, например сталь. Это свойство широко используется при изготовлении художественных кованых изделий из малоуглеродистой стали (ранее называемой ковочным железом). Малоуглеродистая сталь, раскаленная докрасна, становится настолько пластичной и мягкой, что из нее можно изготовлять художественные изделия самой разнообразной сложной формы.

Свариваемость – способность металла прочно соединяться путем местного нагрева и расплавления свариваемых кромок изделия. , Чистые металлы свариваются легче, а сплавы труднее. Легко свариваются изделия из малоуглеродистой стали. Чем выше процент содержания углерода в стали, тем свариваемость ее хуже. Наиболее затруднительной считается сварка высокоуглеродистых легированных сталей и особенно чугуна.

Спекаемость – свойство, в результате которого образуется металлокерамика. При этом металлы, предварительно измельченные в порошок, смешиваются, запрессовываются в специальные формы и подвергаются действию высокой температуры и давления до спекания. Различные металлы спекаются неодинаково – одни лучше, другие хуже. Способом спекания сейчас производят особо твердые стойкие сплавы, например победит, который применяется при изготовлении режущих инструментов.

Обрабатываемость резанием на различных станках (токарном, фрезерном и пр.), а также способность шлифоваться и полироваться – это свойства, играющие существенную роль в производстве художественных изделий и особенно в отделке (полировании). Хорошо режутся бронзы, латуни и некоторые марки сталей, алюминия и чугуна. Особенно плохо обрабатываются на станках детали из красной меди и из свинца и его сплавов.

Химические свойства

Из химических свойств металлов практически наиболее важными в производстве изделий художественной промышленности являются растворение и окисление.

Растворение, или разъедание,– это способность металлов и сплавов растворяться в сильных кислотах и едких щелочах. Наиболее часто в производстве употребляются серная, азотная и соляная кислоты, а также смесь азотной и соляной кислот, называемая “царской водкой”, а из щелочей – едкий натр и едкое кали.

Свойство металлов растворяться имеет очень широкое применение в самых различных областях производства художественных изделий из металла. При этом следует различать случаи, когда растворение носит частичный характер и ограничивается только поверхностным слоем металла, а также случаи полного растворения металла и перехода его в раствор. Примерами частичного растворения с поверхности являются:

    травление изделий в кислотах для получения чистой поверхности или узора (рис. 2);


Рис. 2. Вазы из алюминия, обработанные травлением. Художник Л. Линакс

Примерами полного растворения металла являются:

  • растворение цинка в соляной кислоте для приготовления хлористого цинка, употребляемого в качестве флюса при пайке;
  • растворение серебра в азотной кислоте при приготовлении азотнокислого серебра и т. п.

Окисление – способность металлов соединяться с кислородом и образовывать окислы металлов. При окислении вес металла увеличивается на вес кислорода, который с ним соединяется. Обычно почти все металлы и сплавы покрыты с поверхности тонкой оксидной (или окисной) пленкой, представляющей собой тончайший слой, состоящий из окислов.

Скорость образования такой пленки на поверхности изделия из различных металлов неодинакова. Например, магний и алюминий окисляются особенно быстро, бронза и латунь значительно медленнее, а изделия из золота и платины совсем не окисляются.

Особенно быстро окисление происходит при нагреве до высоких температур. В этом случае на поверхности металла быстро образуется более толстый слой, состоящий из окислов, который называется окалиной. Чем выше нагрев и больше доступ воздуха к нагреваемому изделию, тем толще слой образующейся окалины. Если металл нагревать в условиях избытка воздуха или кислорода, то весь металл может превратиться в окалину.

В одних случаях способность металлов к окислению и образование на их поверхности оксидной пленки является желательным, так как такая пленка предохраняет изделие от дальнейшего окисления металла в глубину и носит название защитной пленки. Таковы окисные пленки на изделиях из алюминиевых сплавов.

В других случаях образование окислов на поверхности металлов является нежелательным, например трудности пайки и сварки алюминиевых изделий обусловлены быстрым образованием очень прочной оксидной пленки, которая препятствует соприкосновению припоя с чистой поверхностью металла. Очень нежелательно и образование окалины на стальных изделиях в процессе их закалки, которая появляется даже при содержании кислорода в атмосфере, не превышающем 0,2%.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: