Этиленгликоль – определение, формула, виды, способы получения

Этиленгликоль: химические свойства и получение

Этиленгликоль C2H4(OH)2 или CH2(OH)CH2OH, этандиол-1,2 – это органическое вещество, предельный двухатомный спирт .

Общая формула предельных нециклических двухатомных спиртов: CnH2n+2O2 или CnH2n(OН)2

Строение этиленгликоля

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства спиртов

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому этиленгликоль – жидкость с относительно высокой температурой кипения.

Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Химические свойства этиленгликоля

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии этиленгликоля с растворами щелочей реакция практически не идет, т. к. образующийся алкоголят почти полностью гидролизуется водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому этиленгликоль не взаимодействует с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Этиленгликоль взаимодействует с активными металлами (щелочными и щелочноземельными).

Например, этиленгликоль взаимодействует с калием с образованием гликолята калия и водорода .

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии этиленгликоля с галогеноводородами группы ОН замещаются на галоген и образуются дигалогеналкан.

Например, этиленгликоль реагирует с бромоводородом.

2.2. Этерификация (образование сложных эфиров)

Многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этиленгликоль реагирует с уксусной кислотой с образованием эфира:

2.4. Взаимодействие с кислотами-гидроксидами

Этиленгликоль взаимодействует и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этиленгликоля с азотной кислотой образуется нитроэтиленгликоль :

3. Дегидратация

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. При высокой температуре (180 о С) протекает внутримолекулярная дегидратация этиленгликоля и образуется соответствующий ацетальдегид.

4. Окисление этиленгликоля

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

4.1. Окисление оксидом меди (II)

Этиленгликоль можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества.

4.2. Окисление кислородом в присутствии катализатора

Этиленгликоль можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.).

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) этиленгликоль окисляется до щавелевой кислоты.

Например, при взаимодействии этиленгликоля с перманганатом калия в серной кислоте образуется щавелевая кислота

4.4. Горение этиленгликоля

При сгорании этиленгликоля образуется углекислый газ и вода и выделяется большое количество теплоты.

5. Дегидрирование этаниленгликоля

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования.

Читайте также:
Изомерия в химии - определение, положения, примеры и виды
Например, при дегидрировании этиленгликоля образуется этандиаль

Получение этиленгликоля

1. Щелочной гидролиз дигалогеналканов

При взаимодействии дигалогеналканов с водным раствором щелочей образуются двухатомные спирты. Атомы галогенов в дигалогеналканах замещаются на гидроксогруппы.

Например, при нагревании 1,2-дихлорэтана с водным раствором гидроксида натрия образуется этиленгликоль

2. Гидрирование карбонильных соединений

Например, при гидрировании этандиаля образуется этиленгликоль

О=CН-CH=O + 2H2 CH2(OH)-CH2OH

3. Гидролиз сложных эфиров

При гидролизе сложных эфиров этиленгликоля и карбоновых кислот образуются этиленгликоль и карбоновая кислота.

4. Мягкое окисление алкенов

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Этиленгликоль – строение, характеристика и классификация органического соединения

Особенности трёх спиртов

Спирты — это функциональные производные углеводородов, имеющие в своём составе гидроксильную группу. Если она одна, то это одноатомные спирты, если гидроксигрупп несколько, то это многоатомные спирты. Например, в молекуле этандиола-1,2 две гидроксильные группы:

НО — СН2 — СН2 — ОН

В молекуле пропантриола-1,2,3 три гидроксильные группы. Соответственно, он является трёхатомным спиртом:

НО — СН2 — ОН — СН — СН2 — ОН

Вещества, содержащие несколько ОН-групп одного атома углерода, не относятся к классу спиртов и в большинстве случаев очень неустойчивы. В результате отщепления воды они превращаются в карбонильные соединения: СН3 — ОН — СН — ОН (гидрат ацетальдегида) = С2Н4О (ацетальдегид или этаналь) + Н2О (вода).

Из спиртов выделяются два представителя: этандиол-1,2 (c2h6o2) и пропантриол-1,2,3 (С3Н8О3). Название многоатомных спиртов строится так же, как и одноатомных. Сначала идёт название соответствующего алкана, на конце «ол», а перед ним располагается суффикс, обозначающий количество гидроксигрупп (ди, три, тетра). Например, диэтиленгликоль, триэтандиол, триэтиленгликоль и др.

Этандиол имеет ещё одно название — этиленгликоль, а пропантриол — это тот же глицерин или глицерол. В целом двухатомные спирты часто называют гликолями. Этиленгликолевый раствор (смешанный с водой) замерзает при температурах ниже 40 градусов, поэтому он используется в системе охлаждения двигателей у автомобилей в зимний период.

Этиленгликоль, формула которого С2Н6О2, является простейшим видом спиртов. В очищенном виде он представляет собой прозрачную бесцветную жидкость, слегка маслянистой консистенции. Он не имеет запаха и обладает сладковатым вкусом; токсичен. Попадание этиленгликоля или его растворов в организм человека может вызвать необратимые изменения и привести к смерти.

Химические свойства

Свойства класса многоатомных спиртов во многом сходны с одноатомными. К ним относятся реакции со щелочными металлами. В результате них образуются соли многоатомных спиртов. Если взаимодействие происходит с глицерином, то образуются глицераты:

2С3Н8О3 (глицерин) + 6Na = 2C3H5Na3O3 (глицерат натрия) + 3H2

Если с этиленом, то образуются гликоляты: С2Н6О2 + 2Na = C2H4Na2O2 + H2

Реакции со щелочами

Одноатомные спирты не реагируют с водными растворами щелочей, но для многоатомных спиртов такие реакции вполне возможны: С2Н6О2 + NaOH = C2H5NaO2 + H2O

Здесь необходимо обратить внимание на два нюанса. Главное — это то, что реакция идёт только по первой ступени. Спирт выступает как кислота, то есть, по сути, это аналог реакции нейтрализации. Такое свойство демонстрирует, что многоатомные спирты более сильные кислоты, чем вода. Однако их кислотных свойств недостаточно, чтобы изменять окраску индикатора.

Образование сложных эфиров

Это свойство по-другому ещё называется этерификацией. Возможно воздействие как с органическими кислотами, так и с неорганическими:

С3Н8О3 + (стеариновая кислота) 3С17Н35СООН (t, H+) = (тристеарат глицерина) C3H5 — O3 — C3O3 — C17H35 + 3H2O

Здесь глицерин при нагревании вступает в реакцию со стеариновой кислотой с образованием сложного эфира (тристеарата глицерина). Сложные эфиры глицерина с карбоновыми кислотами называются жирами. Как правило, в состав жиров входят остатки высших карбоновых кислот с числом атомов углерода больше 15 (С15Н31СООН — пальмитиновая, С17Н35СООН — стеариновая).

Читайте также:
Кислород формула, строение элемента, химические и физические свойства, способы получения и применения, с какими соединениями реагирует

Реакция с минеральной кислотой

Тут реакция будет идти в присутствии концентрированной соляной кислоты.

С3Н8О3 + 3НNO3 (HCl) = C3H5 — O3 — 3NO6 + H2O

В результате получается тринитрат глицерина, более известный под своим тривиальным названием нитроглицерин или тринитроглицерин (взрывчатое вещество). Оно является основным компонентом взрывчатки — динамита.

Нитроглицерин не является нитросоединением, несмотря на то, что исходя из названия можно прийти к такому выводу. Нитроглицерин относится к классу сложных эфиров, т. е. это сложный эфир азотной кислоты.

Взаимодействие с гидроксидом меди

Качественная реакция на спирты выявляет их слабые кислотные свойства. Это реакция с гидроксидом двухвалентной меди. Приготавливается водный раствор глицерина. Он очень хорошо растворяется в воде. После это происходит получение гидроксида меди. Для этого необходимо налить в пробирку гидроксид натрия и добавить раствор медного купороса (CuSO4). В результате этого гидроксид меди должен выпасть в осадок.

Чтобы убедиться в том, что глицерин обладает кислотными свойствами, в него добавляется часть осадка гидроксида меди.

Осадок при взаимодействии с глицерином будет растворяться, и образуется тёмно-синий раствор глицерата двухвалентной меди. Этиленгликоль, как и глицерин, тоже хорошо растворяется в воде.

Характеристика пропиленгликоля и глицерина

Пропиленгликоль (С3Н8О2) — это бесцветная жидкость. Его структурные характеристики таковы, что он является немного вязким, имеет слабый характерный запах и сладковатый вкус. Обладает гигроскопическими свойствами. В качестве добавки Е1520 пропиленгликоль разрешён в большинстве стран мира. Он считается нетоксичным веществом. При попадании на кожу или внутрь организма не вызывает раздражения и отравления. Удаляется при помощи воды.

У него можно выделить несколько основных физических свойств. К ним относятся:

  • температура замерзания при -59;
  • сохранение вкуса;
  • удержание влаги;
  • растворимость в воде;
  • нетоксичность;
  • антикоррозионность.

Способы получения

Основным способом получения пропиленгликоля или пропандиола является каталитическая гидратация окиси пропилена. Это осуществляется при температуре 150−220 градусов по Цельсию. У пропиленгликоля довольно широкий спектр применения, и его используют для производства следующих продуктов и веществ:

  • антифризы;
  • пищевые красители;
  • крема и мази;
  • пищевые ароматизаторы;
  • жидкость для электронных сигарет.

Основными производителями в Европе являются компании Basf chemical и DWO Europe GMBH. Это вещество продаётся в основном под этими марками.

Свойства и использование глицерола

Глицерин — простейший представитель трёхатомных спиртов. Представляет собой вязкую бесцветную жидкость. Смешивается с водой в любых пропорциях. Если сравнить физические свойства основ, то даже без специальных исследований заметно, что этиленгликоль и пропиленгликоль во многом похожи, в отличие от глицерина. Последний даже при плюсовых температурах остаётся достаточно вязким.

Глицерин является довольно безвредным веществом. Он гигроскопичен, т. е. способен удерживать влагу, поглощая её, например, из воздуха. На этом свойстве основано его применение в косметической промышленности, где он используется для производства средств, увлажняющих кожу. Его также можно приобрести в аптеке, где он выпускается в качестве слабительных свечей или в жидком виде. Кроме того, глицерин используется в сельском хозяйстве для обработки семян и сеянцев деревьев. Это помогает прорастанию злаков и защищает кору деревьев от непогоды.

Промышленное применение этиленгликоля

Этандиол используется для производства различных материалов и веществ. К ним относятся:

  • охлаждающие жидкости и антифризы на основе этиленгликоля;
  • целлофаны;
  • полиуретаны;
  • конденсаторы;
  • тормозные жидкости;
  • теплоносители.

В частности, он активно применяется для создания антифризов. Продукт на основе этого спирта не замерзает, даже если его охлаждать до -40. Вещество становится только более вязким, сохраняя при этом свою текучесть. Для того чтобы полностью кристаллизоваться, температура нужна ещё ниже, потому что процесс кристаллизации у него довольно длительный.

Жидкость, основанная на глицерине, замёрзнет быстрее.

Теплоносители в системах отопления

Состав любого теплоносителя условно можно разделить на четыре составляющие. К ним относятся:

Читайте также:
Карбоновые кислоты - определение в химии, формула, свойства

  • основа (одна из разновидностей гликолей и полигликолей);
  • красители;
  • пакет присадок;
  • специально подготовленная деминерализованная (дистиллированная) вода.

В состав основы может входить один из трёх спиртов: глицерин, пропиленгликоль, этиленгликоль. Разумеется, если просто перемешать все эти компоненты в домашних условиях, то вместо теплоносителя можно получить бесполезную цветную жидкость с нерастворённой взвесью. Производство теплоносителя — это сложный процесс, осуществляемый в промышленных условиях с соблюдением ГОСТа, многочисленных рецептур и технических требований под контролем высококвалифицированных специалистов.

Основные плюсы этандиола

Отличительной характеристикой теплоносителя на основе этиленгликоля является то, что он устойчив к низким температурам и замерзает при -65 градусах (в зависимости от концентрации). Входящие в их состав присадки предотвращают образование накипи и коррозии в трубах. В отличие от других теплоносителей, например, воды, водногликолевые растворы при замерзании расширяются всего на 1,5−2%, что не оказывает негативного влияния на работу тепловых систем.

Обычно чистый концентрат никогда не заливают и смешивают его с дистиллированной водой в пропорции 60 на 40 или 50/50.

Между моноэтиленгликолем и этиленгликолем разницы практически нет — это прозрачная вязкая жидкость, относящаяся к спиртам. К минусам такого теплоносителя относят его токсичность. Попадание 0,1 литра этой жидкости внутрь организма может привести к летальному исходу. Однако при соблюдении эксплуатационных требований и герметичности контура его утечек можно избежать. Всё же по некоторым предписаниям он не применяется в системах отопления детского сада и в некоторых других муниципальных и технических объектах, т. к. в случае утечки это может привести к отравлению людей.

Альтернативная жидкость

Как следствие, позже был изобретён теплоноситель на основе пропиленгликоля. Отличить его можно по специальной маркировке, на которой указана температура замерзания (до минус 30). Пропиленгликоль используется для производства массы продуктов не только в химической, но и в пищевой промышленности. Из него производят добавку Е1520, а также при смешивании с глицерином 50/50 добавляют в электронные сигареты. Иными словами, он совершенно безвреден.

Единственным его минусом является цена, т. к. у такого экологического теплоносителя она будет в два раза больше. Фактически 10 кг этиленгликоля и пропиленгликоля стоят одинаково, однако первый можно разводить с водой почти в два раза, что является намного выгоднее.

У теплоносителя как на основе этиленгликоля, так и на основе пропиленгликоля теплоёмкость гораздо ниже. Соответственно, при проектировании системы отопления следует закладывать большее количество секций радиаторов для создания большей теплоотдачи. Вязкость и плотность у этих теплоносителей также в два-три раза выше, чем у воды, поэтому циркуляционные насосы также следует закладывать больше и мощнее.

Это не касается домов большой площади, т. к. там уже рассчитаны насосы с больши́м запасом.

У пропиленгликоля довольно большое объёмное расширение, и расширительный бак для него необходим большего размера. Кроме того, эти спирты запрещают использовать в качестве теплоносителей большинство производителей газовых и электрических котлов, т. к. их кислотность не всегда совместима с прокладками и теплообменниками. Они также не очень хорошо «дружат» с алюминиевыми радиаторами и межсекционными прокладками, опять же из-за высокой кислотности. Во время эксплуатации их будет разъедать. Отсюда лучше использовать либо литые, либо стальные панельные радиаторы.

Так как этиленгликоль является ядовитым веществом, то утилизировать теплоноситель на его основе (после окончания срока службы) необходимо специальным способом. Существуют определённые компании, которые занимаются его утилизацией. Попросту сливать этиленгликоль в почву крайне не рекомендуется.

Конечно, для хорошей циркуляции по узким каналам отопительного оборудования необходим теплоноситель с самой лучшей текучестью и минимальной вязкостью. Принимая во внимание свойства основ, носители из ядовитого для человека этиленгликоля, представляющего опасность, окрашиваются в красный цвет, а из пропиленгликоля — в зелёный (с пометкой технической жидкости).

Такая жидкость обладает дополнительными свойствами экологичности и безопасности.

Этиленгликоль

Этиленгликоль
Общие
Систематическое наименование этан диол-1,2
Традиционные названия этиленгликоль, 1,2-диоксиэтан, 1,2-этандиол
Химическая формула C2H4(OH)2
Физические свойства
Состояние (ст. усл.) жидкость
Молярная масса 62,068 г/моль
Термические свойства
Температура плавления −12,9 °C
Температура кипения 197,3 °C
Классификация
Рег. номер CAS 107-21-1
SMILES OCCO
Безопасность
Токсичность токсичен
Читайте также:
Калий - конфигурация, свойства, способы применения и получения

Этиленглико́ль (гликоль; 1,2-диоксиэтан; этандиол-1,2), HO—CH2—CH2—OH — простейший представитель полиолов (многоатомных спиртов). В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Токсичен. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу [1] .

Содержание

История открытий и производства

Этиленгликоль впервые был получен в 1859 французским химиком Вюрцом из диацетата этиленгликоля омылением гидроксидом калия и в 1860 гидратацией этиленоксида. Он не находил широкого применения до Первой мировой войны, когда в Германии его стали получать из дихлорэтана для использования в качестве замены глицерина при производстве взрывчатых веществ. В США полупромышленное производство начато в 1917 году через этиленхлоргидрин. Первое крупномасштабное производство начато с возведением завода в 1925 году около Южного Чарлстона (западная Вирджиния, США) компанией “Carbide and Carbon Chemicals Co.” К 1929 году этиленгликоль использовался практически всеми производителями динамита. В 1937 кампания Carbide начало первое крупномасштабное производство, основанное на газофазном окислении этилена до этиленоксида. Монополия компании Carbide на данный процесс продолжалась до 1953 года.

Получение

В промышленности этиленгликоль получают путём гидратации оксида этилена при 10 атм и 190—200°С или при 1 атм и 50—100°С в присутствии 0,1—0,5 % серной или ортофосфорной кислоты, достигая 90% выхода. Побочными продуктами при этом являются этиленгликоль, триэтиленгликоль и незначительное количество высших полимергомологов этиленгликоля.

Применение

Благодаря своей дешевизне этиленгликоль нашёл широкое применение в технике.

  • Как компонент автомобильных антифризов и тормозных жидкостей, что составляет 60 % его потребления. Смесь 60 % этиленгликоля и 40 % воды замерзает при −45 °С. Коррозионно активен, поэтому применяется с ингибиторами коррозии;
  • В качестве теплоносителя в виде раствора в автомобилях, в системах жидкостного охлаждения компьютеров;
  • В производстве целлофана, полиуретанов и ряда других полимеров. Это второе основное применение;
  • Как растворитель красящих веществ;
  • В органическом синтезе:
    • в качестве высокотемпературного растворителя.
    • для защиты карбонильной группы путём получения 1,3-диоксалана. Обработкой вещества с карбонильной группой в бензоле или толуоле этиленгликолем в присутствии кислого катализатора(толуолсульфоновой кислоты, насадке Дина-Старка образующейся воды. Например, защита карбонильной группы изофорона

1,3-диоксоланы могут быть получены также при реакции этиленгликоля с карбонильными соединениями в присутствии триметилхлорсилана [2] или комплекса диметилсульфат-ДМФА [3] 1,3-диоксалана устойчивы к действию нуклеофилов и оснований. Легко регенерируют исходное карбонильное соединение в присутствии кислоты и воды.

  • Как компонент жидкости «И», используемой для предотвращения обводнения авиационных топлив.
  • В качестве криопротектора
  • Для поглощения воды, для предотвращения образования гидрата метана, который забивает трубопроводы при добыче газа в открытом море. На наземных станциях его регенириуют путём осушения и удаления солей.
  • Этиленгликоль является исходным сырьём для производства взрывчатого веществанитрогликоля.

Этиленгликоль также применяется:

  • при производстве конденсаторов
  • при производстве 1,4-диоксана
  • компонент в составе систем жидкостного охлаждения компьютеров
  • как теплоноситель в системах чиллер-фанкойл
  • в качестве компонента крема для обуви (1—2 %)
  • в составе для мытья стёкол вместе с изопропиловым спиртом

Очистка и осушение

Осушается молекулярным ситом 4А, полуводным сульфатом кальция, сульфатом натрия, Mg+I2, фракционной перегонкой под пониженным давлением, азеотропной отгонкой с бензолом. Чистота полученного продукта легко определяется по плотности.

Читайте также:
Качественные реакции на неорганические вещества и ионы характеристика

Таблица плотности водных растворов этиленгликоля, 20°С

Концентрация % 30 35 40 45 50 55 60
Плотность, г/мл 1,050 1,058 1,067 1,074 1,082 1,090 1,098

Меры безопасности

Этиленгликоль — горючее вещество. Температура вспышки паров 120 °C. Температура самовоспламенения 380 °C. Температурные пределы воспламенения паров в воздухе, °С: нижний — 112, верхний — 124. Пределы воспламенения паров в воздухе от нижнего до верхнего, 3,8- 6,4 % (по объему). Требования безопасности Этиленгликоль горюч, по степени воздействия на организм относится к веществам 3-го класса опасности. Этиленгликоль токсичен. Летальная доза при однократном пероральном употреблении составляет 100—300 мл этиленгликоля (1,5-5мл на 1 кг массы тела) [4] . Имеет относительно низкую летучесть при нормальной температуре, пары обладают не столь высокой токсичностью и представляют опасность лишь при хроническом вдыхании. Определённую опасность представляют туманы, однако при их вдыхании об опасности сигнализируют раздражение и кашель. Противоядием при отравлении этиленгликолем являются этанол и 4-метилпиразол (англ. Fomepizole ) [5] .

Acetyl

Это пилотный ролик из серии об органических реакциях.

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

H + Li + K + Na + NH4 + Ba 2+ Ca 2+ Mg 2+ Sr 2+ Al 3+ Cr 3+ Fe 2+ Fe 3+ Ni 2+ Co 2+ Mn 2+ Zn 2+ Ag + Hg 2+ Pb 2+ Sn 2+ Cu 2+
OH – Р Р Р Р Р М Н М Н Н Н Н Н Н Н Н Н Н Н
F – Р М Р Р Р М Н Н М М Н Н Н Р Р Р Р Р Н Р Р
Cl – Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н Р М Р Р
Br – Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Н М М Р Р
I – Р Р Р Р Р Р Р Р Р Р ? Р ? Р Р Р Р Н Н Н М ?
S 2- М Р Р Р Р Н Н Н Н Н Н Н Н Н Н Н
HS – Р Р Р Р Р Р Р Р Р ? ? ? ? ? Н ? ? ? ? ? ? ?
SO3 2- Р Р Р Р Р Н Н М Н ? Н ? Н Н ? М М Н ? ?
HSO3 Р ? Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? ? ? ?
SO4 2- Р Р Р Р Р Н М Р Н Р Р Р Р Р Р Р Р М Н Р Р
HSO4 Р Р Р Р Р Р Р Р ? ? ? ? ? ? ? ? ? ? Н ? ?
NO3 Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
NO2 Р Р Р Р Р Р Р Р Р ? ? ? ? Р М ? ? М ? ? ? ?
PO4 3- Р Н Р Р Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
CO3 2- Р Р Р Р Р Н Н Н Н ? ? Н ? Н Н Н Н Н ? Н ? Н
CH3COO – Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
SiO3 2- Н Н Р Р ? Н Н Н Н ? ? Н ? ? ? Н Н ? ? Н ? ?
Читайте также:
Химические свойства кислот формулы сильных и слабых кислот, уравнения
Растворимые (>1%) Нерастворимые (

Спасибо! Ваша заявка отправлена, преподаватель свяжется с вами в ближайшее время.

Вы можете также связаться с преподавателем напрямую:

8(906)72 3-11-5 2

Скопируйте эту ссылку, чтобы разместить результат запроса ” ” на другом сайте.

Изображение вещества/реакции можно сохранить или скопировать, кликнув по нему правой кнопкой мыши.

Если вы считаете, что результат запроса ” ” содержит ошибку, нажмите на кнопку “Отправить”.

Этим вы поможете сделать сайт лучше.

К сожалению, регистрация на сайте пока недоступна.

На сайте есть сноски двух типов:

Подсказки – помогают вспомнить определения терминов или поясняют информацию, которая может быть сложна для начинающего.

Дополнительная информация – такие сноски содержат примечания или уточнения, выходящие за рамки базовой школьной химии, нужны для углубленного изучения.

Здесь вы можете выбрать параметры отображения органических соединений.

Этиленгликоль – определение, формула, виды, способы получения

Многоатомные спирты – органические соединения, в молекулах которых содержится несколько гидроксильных групп (-ОН), соединённых с углеводородным радикалом

Гликоли (диолы)

CH 2 CH 2

OH OH

Этиленгликоль

Этиленгликоль (этандиол)

  • Сиропообразная, вязкая бесцветная жидкость, имеет спиртовой запах, хорошо смешивается с водой, сильно понижает температуру замерзания воды (60%-ый раствор замерзает при -49 ˚С) –это используется в системах охлаждения двигателей – антифризы.
  • Этиленгликоль токсичен – сильный Яд! Угнетает ЦНС и поражает почки.

CH 2 OH

CH OH

(1,2,3 – пропантриол)

Глицерин (пропантриол-1,2,3)

  • Бесцветная, вязкая сиропообразная жидкость, сладкая на вкус. Не ядовит. Без запаха. Хорошо смешивается с водой.
  • Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей.

Номенклатура

В названиях многоатомных спиртов (полиолов) положение и число гидроксильных групп указывают соответствующими цифрами и суффиксами -диол (две ОН-группы), -триол (три ОН-группы) и т.д. Например:

Получение многоатомных спиртов

I . Получение двухатомных спиртов

В промышленности

1. Каталитическая гидратация оксида этилена (получение этиленгликоля):

2. Взаимодействие дигалогенпроизводных алканов с водными растворами щелочей:

R – CH – CH 2 + 2 NaOH водный раствор → R – CH – CH 2 + 2 NaCl

3. Из синтез-газа:

2CO + 3H2 250°,200 МПа ,kat → CH2(OH)-CH2(OH)

В лаборатории

1. Окисление алкенов:

R – CH = CH 2 + H 2 O + KMnO 4 → R – CH – CH 2 + MnO 2 + KOH

II . Получение трёхатомных спиртов (глицерина)

В промышленности

Омыление жиров (триглицеридов):

CH 2 – O – CO – R CH 2 – OH O

CH- O-CO-R + 3NaOH → CH-OH + 3 R – C- O – Na

│ │ ( натриевая соль карбоновой кислоты )

Химические свойства многоатомных спиртов

Кислотные свойства

1. С активными металлами:

(гликолят натрия)

2. С гидроксидом меди( II ) – качественная реакция!

CH –OH + Cu → CH – O + 2H2O

голубой ярко-синий раствор

осадок (глицерат меди( II ))

Основные свойства

1. С галогенводородными кислотами

2. С азотной кислотой

тринитроглицерин (основа динамита)

  • Этиленгликольпроизводства лавсана, пластмасс, и для приготовления антифризов — водных растворов, замерзающих значительно ниже 0°С (использование их для охлаждения двигателей позволяет автомобилям работать в зимнее время); сырьё в органическом синтезе.
  • Глицерин широко используется в кожевенной, текстильной промышленности при отделке кож и тканейи в других областях народного хозяйства. Сорбит(шестиатомный спирт) используется как заменитель сахара для больных диабетом. Глицерин находит широкое применение в косметике, пищевой промышленности, фармакологии, производстве взрывчатых веществ. Чистый нитроглицерин взрывается даже при слабом ударе; он служит сырьем для получения бездымных порохов и динамита― взрывчатого вещества, которое в отличие от нитроглицерина можно безопасно бросать. Динамит был изобретен Нобелем, который основал известную всему миру Нобелевскую премию за выдающиеся научные достижения в области физики, химии, медицины и экономики. Нитроглицерин токсичен, но в малых количествах служит лекарством, так как расширяет сердечные сосуды и тем самым улучшает кровоснабжение сердечной мышцы.

Этиленгликоль

бесцветная вязкая жидкость со сладковатым вкусом

1,11 г см -3 (20 ° С)

смешивается с водой, этанолом и ацетоном

DFG / Швейцария: 10 мл м -3 или 26 мг м -3

−460,0 кДж / моль (л) −392,2 кДж / моль (г)

(Моно-) этиленгликоль ( МЭГ , обычное название гликоль ) представляет собой простейший двухатомный спирт с химическим названием этан-1,2-диол . Это простейший вицинальный диол . Общее название происходит от сладкого ( греч. Glykys «сладкий»).

Термин гликоли также используется для двух классов диолов, полученных из этиленгликоля. С одной стороны, это 1,2-диолы, такие как 1,2-пропандиол, и, с другой стороны, α, ω-диолы, которые образуются в результате конденсации этиленгликоля: полиэтиленгликолей . Примерами являются диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ).

Оглавление

  • 1 Извлечение и представление
    • 1.1 Техническое производство
    • 1.2 Процесс OMEGA компании Royal Dutch Shell
  • 2 свойства
    • 2.1 Физические свойства
    • 2.2 Химические свойства
    • 2.3 Параметры безопасности
  • 3 Использование
  • 4 Инструкции по безопасности
    • 4.1 Оральная токсичность
  • 5 См. Также
  • 6 веб-ссылок
  • 7 индивидуальных доказательств

Извлечение и представление

Техническое производство

Крупномасштабное производство этиленгликоля , как правило , происходит через катализатор свободной гидратации из окиси этилена при температуре 150-200 ° С и давлении 20-40 бар.

Реакция проводится в трубчатых реакторах с адиабатическим управлением. Один работает с 10-20-кратным молярным избытком воды , чтобы подавить образование высших гликолей (особенно диэтиленгликоля и триэтиленгликоля ). Компоненты обычно перерабатываются и отделяются от смеси продуктов многоступенчатой перегонкой в ректификационных колоннах .

Кроме того, гидратацию можно также проводить с кислотными или основными катализаторами при низких температурах (50–70 ° C) и без давления.

Процесс OMEGA компании Royal Dutch Shell

Дальнейшим развитием этого процесса является процесс OMEGA, разработанный Royal Dutch Shell . Здесь оксид этилена сначала реагирует с диоксидом углерода в воде с образованием этиленкарбоната . Затем он гидролизуется водяным паром с образованием 2-гидроксиэтилгидрокарбоната, который затем распадается декарбоксилированием в воде с образованием этиленгликоля и диоксида углерода. После обработки последний возвращается на первую стадию реакции.

Выход этиленгликоля в этом процессе составляет около 99%. Смеси йодида калия (KI) и молибдата калия (K 2 MoO 4 ) служат в качестве катализаторов .

В 2010 году мировые мощности по производству этиленгликоля составляли около 25 миллионов тонн в год.

характеристики

Физические свойства

Этиленгликоль представляет собой бесцветную вязкую жидкость при комнатной температуре. Температура плавления −16 ° C. Соединение кипит при 197 ° C при нормальном давлении. Согласно Антуану, функция давления пара получается из log 10 (P) = A− (B / (T + C)) (P в торр , T в ° C) с A = 9,6, B = 3225 и C = 283 дюймов. температурный диапазон от 53 ° C до 198 ° C.

Этиленгликоль имеет вязкость 20,81 мПа · с при 20 ° C. При 30 ° C вязкость падает до 13,87 мПа · с.

При использовании в качестве охлаждающей жидкости теплоемкость колеблется в зависимости от добавления воды от 2,4 до 4,2 кДж / (кг · К) для чистой воды. Смесь 50/50 замерзает при -40 ° C, кипит при 108 ° C и достигает теплоемкости 3,5 кДж / (кг · К). В отличие от других эфиров гликоля, он не образует азеотропа с водой .

Химические свойства

Этиленгликоль разлагается при температуре кипения на воздухе и выделяет, среди прочего, гликолевый альдегид , глиоксаль , ацетальдегид , метан , формальдегид , монооксид углерода и водород .

Этиленгликоль вызывает легкую коррозию железных труб.

Параметры безопасности

Этиленгликоль образует легковоспламеняющиеся паровоздушные смеси выше температуры вспышки при 111 ° C. Нижний предел взрываемости составляет 3,2% по объему (80 г / м), то верхний предел взрыва (В) в диапазоне от 43 до 51% по объему (1090 – 1326 г / м). Нижняя точка взрыва составляет 109 ° С Температура воспламенения приводит 410 ° C в температурном классе Т2. При удельной электропроводности 1,16 · 10 -4 См · м -1 или удельном сопротивлении 8,62 · 10 3 Ом · м, согласно TRGS 727 , этиленгликоль все же можно считать проводящим.

использовать

Он был разработан в 1928 году компанией IG Farben в Людвигсхафене как морозостойкая охлаждающая жидкость для двигателей внутреннего сгорания и продавался под торговой маркой Glysantin .

(Моно) этиленгликоль сегодня в основном используется для производства полиэфирных волокон и полиэтилентерефталата , полиэфира, полученного из стехиометрических количеств терефталевой кислоты и этиленгликоля со 100% степенью этерификации. 45% мирового производства перерабатывается в Китае.

Благодаря своим гидрофильным свойствам он используется в качестве абсорбента для удаления водяного пара из природного газа и газа нефтепереработки или рециркулирующих газов при гидроочистке. Смеси гликоля и воды используются в качестве противообледенительных агентов для самолетов и зон движения во всех коммерческих аэропортах .

В исследованиях этиленгликоль используется в качестве растворителя и восстановителя для жидкофазного синтеза одномерных металлических наноструктур.

Инструкции по технике безопасности

  • Проницаемость этиленгликоля для кожи аналогична проницаемости этанола и глицерина . Этиленгликоль очень трудно всасывается через неповрежденную кожу. При контакте с глазами или слизистыми оболочками может возникнуть покраснение или воспаление, а также может возникнуть раздражение.
  • Из-за низкого давления пара его практически можно вдыхать только в виде аэрозоля или паров горячих продуктов, содержащих этиленгликоль.
  • При проглатывании 30 мл и более считается серьезным, если более 100 мл – опасным для жизни отравлением . BfR определяет токсическую дозу 0,1 мл / кг массы тела для человека.

Оральная токсичность

Симптомы аналогичны симптомам отравления метанолом («фальсифицированный алкоголь»). Однако продукты распада совершенно разные. Из-за сладкого вкуса разбавленного водой антифриза отравление этиленгликолем не редкость. Взрослым рекомендуется немедленное употребление этанола в качестве противоядия (150 мл виски или бренди); клинически 4-метилпиразол ( фомепизол ) или этанол назначают внутривенно.

Для клеток токсичен не сам этиленгликоль, а его метаболиты с альдегидными функциями, гликолевый альдегид , глиоксаль и глиоксиловая кислота . Они реагируют со всеми тиоловыми и аминогруппами ферментов и белков. Фермент алкогольдегидрогеназа (ADH) катализирует эти стадии окисления (спирт → альдегид). Рекомендуемые антидоты действуют как конкурентные ингибиторы алкогольдегидрогеназы. Фермент альдегидоксидаза (АО) контролирует стадию медленного окисления (альдегид → карбоновая кислота).

При отсутствии лечения отравление прогрессирует в три стадии: от начальных симптомов (головокружение, опьянение, нарушение сознания), поражения сердца и печени (через 12–24 часов) до уремической комы с острой почечной недостаточностью . Обнаружены типичные продукты разложения и вторичные продукты, такие как гликолевая кислота , гиппуровая кислота и щавелевая кислота .

Этиленгликоль – двухатомный спирт для высококачественных антифризов

Этиленгликоль (1,2-этандиол, 1,2-диоксиэтан, гликоль) является базовым веществом для изготовления различных антифризов, которые используются в системах охлаждения двигателей транспортных средств.

Этиленгликоль – токсичный двухатомный спирт

Химическая формула данного простейшего многоатомного спирта – С2Н6О2 (иначе ее можно записать следующим образом – НО–СН2–СН2–ОН). Этиленгликоль имеет слегка сладковатый вкус, не имеет запаха, в очищенном состоянии выглядит, как немного маслянистая бесцветная прозрачная жидкость.

Так как он причислен к токсичным соединениям (по общепринятой классификации – третий класс опасности), следует избегать попадания данного вещества (в растворах и в чистом виде) в организм человека. Основные химические и физические свойства 1,2-диоксиэтана:

  • молярная масса – 62,068 г/моль;
  • коэффициент оптического преломления – 1,4318;
  • температура воспламенения – 124 градуса (верхний предел) и 112 градусов (нижний предел);
  • температура самовоспламенения – 380 °С;
  • температура замерзания (стопроцентный гликоль) – 22 °С;
  • температура кипения – 197,3 °С;
  • плотность – 11,113 г/кубический сантиметр.

Пары описываемого двухатомного спирта вспыхивают в тот момент, когда его температура достигает 120 градусов. Еще раз напомним, что 1,2-этандиол имеет 3-й класс опасности. А это означает, что его предельно допустимые концентрации в атмосфере могут быть не более 5 миллиграмм/кубический метр. Если же этиленгликоль попадает в организм человека, в нем могут развиться необратимые негативные явления, которые способны привести к смерти. При однократном употреблении вовнутрь 100 и более миллилитров гликоля наступает летальный исход.

Пары данного соединения менее токсичны. Так как этиленгликоль характеризуется сравнительно малым показателем летучести, реальная опасность для человека возникает тогда, когда он систематически вдыхает пары 1,2-этандиола. О том, что есть вероятность отравления парами (либо туманами) рассматриваемого соединения, сигнализирует кашель и раздражение слизистой оболочки. Если человек отравляется гликолем, ему следует принять препарат, содержащий 4-метилпиразол (мощный антидот, подавляющий фермент алкогольдегидрогеназы), или этанол (одноатомный этиловый спирт).

Применение гликоля в разных областях техники

Малая себестоимость данного многоатомного спирта, его особые химические и физические свойства (плотность и другие) привели к тому, что он используется весьма широко в различных технических сферах.

Любой автомобилист знает, что представляет собой обычная охлаждающая жидкость для его «железного коня» под названием антифриз – этиленгликоля 60 % + воды 40 %. Такая смесь характеризуется температурой замерзания -45 градусов, очень трудно найти более подходящую жидкость для автомобильных систем охлаждения, несмотря даже и на высокий класс опасности 1,2-этандиола.

В автомобильной отрасли этиленгликоль находит применение и в качестве отличного теплоносителя. Кроме того, он используется в следующих сферах:

  • органический синтез: химические свойства гликоля позволяют с его помощью защищать изофорон и другие карбонильные группы, использовать спирт в виде эффективного растворителя, работающего при повышенных температурах, а также в качестве основной составляющей специальной авиационной жидкости, уменьшающей явление обводнения горючих смесей для летательных аппаратов;
  • растворение красящих соединений;
  • изготовление нитрогликоля – мощного взрывчатого вещества на основе описываемого нами соединения;
  • газодобывающая промышленность: гликоль не позволяет формироваться гидрату метана на трубах, кроме того, он поглощает излишнюю влагу на трубопроводах.

Нашел этиленгликоль применение и в качестве эффективного криопротектора. Его используют для производства кремов для обуви, в качестве важного элемента жидкостей для охлаждения компьютерной техники, при изготовлении 1,4-диоксина и разных видов конденсаторов.

Некоторые нюансы производства гликоля

В конце 1850-х годов химик из Франции Вюрц получил этиленгликоль из его диацетата, а чуть позже путем гидратации этиленоксида. Но в то время практического применения новое вещество нигде не нашло. Лишь в 1910-х годах его начали использовать при изготовлении взрывчатых соединений. Плотность гликоля, его иные физические свойства и дешевизна производства обусловили то, что им заменили глицерин, который применялся до этого.

Особые свойства 1,2-этандиола по достоинству оценили американцы. Именно они наладили в середине 1920-х его промышленное изготовление на специально построенном и оборудованном заводе в Западной Вирджинии. В последующие годы гликоль использовали почти все известные на то время компании, занимавшиеся производством динамита. В настоящее время интересующее нас соединение, которое имеет третий класс опасности, изготавливается по технологии гидратации окиси этилена. Существует два варианта его производства:

  • с участием ортофосфорной либо серной кислоты (до 0,5 процентов) при температуре от 50 до 100 °С и давлении в одну атмосферу;
  • при температуре около 200 °С и давлении в десять атмосфер.

В результате реакции гидратации образуется до 90 процентов чистого 1,2-диоксиэтана, некоторое количество полимергомологов и триэтиленгликоля. Второе соединение добавляют в гидравлические и тормозные жидкости, оно применяется в промышленных системах охлаждения воздуха, из него делают препараты для дезинфекции, а также пластификаторы.

Важнейшие требования ГОСТ 19710 к готовому гликолю

С 1984 года действует ГОСТ 19710, который устанавливает требования к тому, какие свойства (температура замерзания, плотность и так далее) должен иметь этиленгликоль, используемый на предприятиях автомобилестроения и в других отраслях народного хозяйства, где на его основе выпускают разнообразные составы.

По ГОСТ 19710 гликоль (как жидкость) может быть двух типов: первого сорта и высшего сорта. Доля (массовая) воды в гликоле первого сорта должна быть до 0,5 %, высшего – до 0,1 %, железа – до 0,00005 и 0,00001 %, кислот (в пересчете на уксусную кислоту) – до 0,005 и 0,0006 %. Остаток после прокаливания готового продукта не может быть более 0,002 и 0,001 %.

Цвет 1,2-диоксиэтана по ГОСТ 19710 (по шкале Хазена):

  • после кипячения в растворе кислоты (соляной) – 20 единиц для продукции высшего сорта (первый сорт не нормируется по цвету);
  • в стандартном состоянии – 5 (высший сорт) и 20 единиц (первый сорт).

В Государственном стандарте 19710 выдвигаются специальные требования к процессу производства описываемого простейшего спирта:

  • используется исключительно герметичная аппаратура и оборудование;
  • производственное помещение обязательно оснащается вентиляцией, рекомендованной для работы с соединениями, которым присвоен третий класс опасности;
  • при попадании гликоля на оборудование или землю его следует сразу же обильно смывать водной струей;
  • персонал, работающий в цеху по производству 1,2-этандиола, обеспечивается противогазом модели «БКФ» либо иным приспособлением для защиты органов дыхания, соответствующим ГОСТ 12.4.034;
  • возгорания гликоля тушат при помощи инертных газов, специальных пенных составов, а также тонкораспыленной воды.

Готовая продукция по ГОСТ 19710 проверяется различными методами. Например, массовая часть двухатомного спирта и диэтиленгликоля устанавливается способом изотермической газовой хроматографии по технологии так называемого «внутреннего эталона». При этом используются весы для лабораторных исследований (ГОСТ 24104), стеклянная или стальная газохроматографическая колонка и хроматограф с детектором ионизационного типа, измерительная линейка, микрошприц, лупа оптическая (ГОСТ 25706), выпарительная чашка и другой инструмент.

Цвет гликоля устанавливают по стандарту 29131 при помощи секундомера, специального цилиндра, конической колбы, соляной кислоты, холодильного агрегата. Массовая часть железа устанавливается по Госстандарту 10555 по методике сульфациловой фотометрии, остатка после прокаливания – по Госстандарту 27184 (посредством выпаривания полученного соединения в платиновой либо кварцевой емкости). А вот массовая часть воды определяется электрометрическим или визуальным титрованием с использованием реактива Фишера в бюретках емкостью 10 либо 3 кубических сантиметра.

Антифриз – охлаждающая жидкость на основе гликоля

Антифриз на основе простейшего многотомного спирта применяется в современных транспортных средствах с целью охлаждения их двигателя. Его основным компонентом является этиленгликоль (есть составы с пропиленгликолем в качестве основного компонента). Добавками служит дистиллированная вода и специальные присадки, которые придают антифризу флуоресцентные, антикавитационные, антикоррозионные, антипенные свойства.

Главная характеристика антифризов – малая температура замерзания. Кроме того, они имеют низкий показатель расширения при замерзании (по сравнению с обычной водой на 1,5–3 процента меньше). При этом такая специальная охлаждающая жидкость на основе гликоля характеризуется высокой температурой кипения, что улучшает процесс эксплуатации транспортного средства в жаркую пору года.

В целом жидкость для охлаждения автодвигателей на основе гликоля и воды обладает следующими достоинствами:

  • отсутствие вредных добавок (аминов, разнообразных нитритов, неблагоприятно влияющих на природу фосфатов);
  • возможность выбора необходимой концентрации антифриза для качественного предохранения двигателя автомобиля от замерзания;
  • стабильные параметры и свойства в течение всего срока службы;
  • совместимость с теми деталями охлаждающей системы авто, которые сделаны из пластмассы или резины;
  • высокие антипенные показатели.

Кроме всего прочего, современные антифризы обеспечивают антикоррозионную защиту металлических сплавов и металлов, имеющихся в двигателе внутреннего сгорания за счет наличия в них особых ингибирующих добавок.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: