Химическая реакция. Условия и признаки протекания химических реакций. Химические уравнения. Сохранение массы веществ при химических реакциях

Химическая реакция. Условия и признаки протекания химических реакций. Химические уравнения. Сохранение массы веществ при химических реакциях.

Характерные химические свойства простых веществ — металлов: щелочных, щелочноземельных, алюминия, переходных металлов — меди, цинка, хрома, железа

Простые вещества – металлы

С развитием производства металлов (простых веществ) и сплавов связано возникновение цивилизации (бронзовый век, железный век).

Начавшаяся примерно $100$ лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до $3000°С$; в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.

И, конечно же, мы не должны забывать, что в большинстве сплавов используют давно известный металл железо, а основу многих легких сплавов составляют сравнительно «молодые» металлы — алюминий и магний.

Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами из вольфрама, молибдена, стали и других металлов и сплавов — все зависит от поставленной цели и необходимых для ее достижения свойств материала.

Вы уже имеете представление о природе химической связи в кристаллах металлов. Напомним на примере одного из них — натрия, как она образуется. На рисунке изображена схема кристаллической решетки натрия. В ней каждый атом натрия окружен восемью соседями. У атома натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов. Электронная формула атома натрия: $1s^<2>2s^<2>2p^<6>3s^<1>3p^<0>3d^<0>$, где $3s, 3p, 3d$ — валентные орбитали.

Единственный валентный электрон атома натрия $3s^1$ может занимать любую из девяти свободных орбиталей — $3s$ (одна), $3р$ (три) и $3d$ (пять), ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристаллическая решетка, валентные орбитали соседних атомов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на другую, осуществляя связь между всеми атомами кристалла металла.

Такую химическую связь называют металлической. Металлическую связь образуют элементы, атомы которых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла.

Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически так, как показано на рисунке. Катионы и атомы металлов, расположенные в узлах кристаллической решетки, обеспечивают ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь — это связь в металлах и сплавах между атомионами металлов, расположенными в узлах кристаллической решетки, осуществляемая обобществленными валентными электронами.

Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ — существовать в нескольких кристаллических модификациях — называют полиморфизмом.

Например, железо имеет четыре кристаллических модификации, каждая из которых устойчива в определенном температурном интервале:

  • $α$ — устойчива до $768°С$, ферромагнитная;
  • $β$ — устойчива от $768$ до $910°С$, неферромагнитная, т.е. парамагнитная;
  • $γ$ — устойчива от $910$ до $1390°С$, неферромагнитная, т.е. парамагнитная;
  • $δ$ — устойчива от $1390$ до $1539°С$ ($t°_ <пл.>железа), неферромагнитная.

Олово имеет две кристаллические модификации:

  • $α$ — устойчива ниже $13,2°С$ ($ρ=5,75 г/см^3$). Это серое олово. Оно имеет кристаллическую решетку типа алмаза (атомную);
  • $β$ — устойчива выше $13,2°С$ ($ρ=6,55 г/см^3$). Это белое олово.

Белое олово — серебристо-белый очень мягкий металл. При охлаждении ниже $13,2°С$ он рассыпается в серый порошок, т.к. при переходе $β→α$ значительно увеличивается его удельный объем. Это явление получило название «оловянной чумы».

Конечно, особый вид химической связи и тип кристаллической решетки металлов должны определять и объяснять их физические свойства.

Каковы же они? Это металлический блеск, пластичность, высокая электрическая проводимость и теплопроводность, рост электрического сопротивления при повышении температуры, а также такие значимые свойства, как плотность, высокие температуры плавления и кипения, твердость, магнитные свойства.

Давайте попробуем объяснить причины, определяющие основные физические свойства металлов.

Почему металлы пластичны?

Механическое воздействие на кристалл с металлической кристаллической решеткой вызывает смещение слоев ион-атомов друг относительно друга, а так как электроны перемещаются по всему кристаллу, разрыв связей не происходит, поэтому для металлов характерна большая пластичность.

Аналогичное воздействие на твердое вещество с ковалентными связями (атомной кристаллической решеткой) приводит к разрыву ковалентных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ионов. По этому вещества с атомными и ионными кристаллическими решетками хрупкие.

Наиболее пластичные металлы — это $Au, Ag, Sn, Pb, Zn$. Они легко вытягиваются в проволоку, поддаются ковке, прессованию, прокатыванию в листы. Например, из золота можно изготовить золотую фольгу толщиной $0,003$ мм, а из $0,5$ г этого металла можно вытянуть нить длиной $1$ км.

Даже ртуть, которая, как вы знаете, при комнатной температуре жидкая, при низких температурах в твердом состоянии становится ковкой, как свинец. Не обладают пластичностью лишь $Bi$ и $Mn$, они хрупкие.

Почему металлы имеют характерный блеск, а также непрозрачны?

Электроны, заполняющие межатомное пространство, отражают световые лучи (а не пропускают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой части спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в большей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют светло-желтый, желтый и медный цвета.

Хотя на практике металл не всегда нам кажется светлым телом. Во-первых, его поверхность может окисляться и терять блеск. Поэтому самородная медь выглядит зеленоватым камнем. А во-вторых, и чистый металл может не блестеть. Очень тонкие листы серебра и золота имеют совершенно неожиданный вид — они имеют голубовато-зеленый цвет. А мелкие порошки металлов кажутся темно-серыми, даже черными.

Наибольшую отражательную способность имеют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожекторах.

Почему металлы имеют высокую электрическую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под воздействием приложенного электрического напряжения приобретают направленное движение, т. е. проводят электрический ток. При повышении температуры металла возрастают амплитуды колебаний находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет перемещение электронов, электрическая проводимость металла падает. При низких температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость металлов резко возрастает. Вблизи абсолютного нуля сопротивление у металлов практически отсутствует, у большинства металлов появляется сверхпроводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать.

Наибольшую электрическую проводимость имеют серебро, медь, а также золото, алюминий, наименьшую — марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется теплопроводность металлов.

Она обусловлена большой подвижностью свободных электронов, которые, сталкиваясь с колеблющимися ионами и атомами, обмениваются с ними энергией. Происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температура плавления у металлов очень сильно отличаются. Причем с увеличением числа электронов, связывающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы ($Li, K, Na, Rb, Cs$), атомы которых имеют один валентный электрон, мягкие, с небольшой плотностью (литий — самый легкий металл с $ρ=0,53 г/см^3$) и плавятся при невысоких температурах (например, температура плавления цезия $29°С$). Единственный металл, жидкий при обычных условиях, — ртуть — имеет температуру плавления, равную $–38,9°С$.

Кальций, имеющий два электрона на внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре ($842°С$).

Еще более прочной является кристаллическая решетка, образованная ионами скандия, который имеет три валентных электрона.

Но самые прочные кристаллические решетки, большие плотности и температуры плавления наблюдаются у металлов побочных подгрупп V, VI, VII, VIII групп. Это объясняется тем, что для металлов побочных подгрупп, имеющих неспаренные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осуществляемой электронами внешнего слоя с $s$-орбиталей.

Вспомните, что самый тяжелый металл — это осмий $Os$ с $ρ=22,5 г/см^3$ (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл — это вольфрам $W$ с $t_<пл.>=3420°С$ (применяется для изготовления нитей накаливания ламп), самый твердый металл — это хром $Cr$ (царапает стекло). Они входят в состав материалов, из которых изготавливают металлорежущий инструмент, тормозные колодки тяжелых машин и др.

Металлы по-разному взаимодействуют с магнитным полем. Такие металлы, как железо, кобальт, никель и гадолиний выделяются своей способностью сильно намагничиваться. Их называют ферромагнетиками. Большинство металлов (щелочные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничиваются и не сохраняют это состояние вне магнитного поля — это парамагнетики. Металлы, выталкиваемые магнитным полем, — диамагнетики (медь, серебро, золото, висмут).

Напомним, что при рассмотрении электронного строения металлов мы разделили металлы на металлы главных подгрупп ($s-$ и $р-$элементы) и металлы побочных подгрупп (переходные $d-$ и $f-$элементы).

В технике принято классифицировать металлы по различным физическим свойствам:

Химические реакции. Условия и признаки протекания химических реакций. Химические уравнения. Сохранение массы веществ при химических реакциях

Химическими реакциями называют процессы превращения одних веществ в другие. К химическим реакциям относятся сгорание топлива, коррозия металлов, выплавка металлов из руд, гниение, фотосинтез, промышленный синтез аммиака и пр. Каждой химической реакции соответствует химическое уравнение. Химическое уравнение — это условная запись химической реакции с помощью химических формул и коэффициентов, например:

Такая запись отражает не только качественную, но и количественную информацию о ходе реакции. Так, из первого уравнения мы видим, что магний взаимодействует с кислородом с образованием оксида магния(II). Это качественная информация. Мы видим также, что 2 моль атомов магния (48 г) взаимодействует с 1 моль молекул кислорода (32 г) с образованием 2 моль оксида магния (80 г). Это количественная информация, содержащаяся в уравнении реакции.

Количественная информация основана на законе сохранения массы веществ, участвующих в реакции (М.В. Ломоносов, 1748, А. Лавуазье, 1789): “Масса веществ, участвующих в реакции, равна массе веществ, образующихся в ходе реакции”. Объяснение этого закона даётся с позиций атомно-молекулярного учения: поскольку при химических реакциях атомы сохраняются, то масса атомов, вступивших в реакцию, равна массе атомов, содержащихся в продуктах реакции. На основании закона сохранения массы веществ можно проводить химические расчёты по уравнениям химических реакций.

Одни химические реакции могут протекать самопроизвольно, при простом контакте или смешивании веществ, а другие — только при определённых условиях.

Условиями протекания химических реакций могут быть:

— облучение светом или ультрафиолетом,

— механическое воздействие на систему,

— действие высокого давления,

— воздействие электрического тока,

— использование специфического растворителя и др.

В таких случаях необходимо указать условия проведения реакции над стрелкой (знаком равенства), например:

Особенно важно указывать условия протекания реакций в органической химии, т. к. одни и те же реагенты образуют различные продукты в разных условиях. Так, при дегидратации этилового спирта могут образоваться и этилен, и диэтиловый эфир:

В зависимости от условий, угарный газ СО и водород Н2 могут дать и метиловый спирт, и муравьиный альдегид, и синтетический бензин. Таких примеров можно привести достаточно много.

Если в ходе реакции выделяется (или поглощается) теплота, это отображается в уравнении химической реакции символом +Q (или — Q), например:

Уравнение химической реакции с указанием теплового эффекта этой реакции называется термохимическим уравнением. Термохимическими уравнениями являются следующие:

Из термохимического уравнения видно, что образование 2 моль хлороводорода из газообразных водорода и хлора сопровождается выделением 184 кДж теплоты (реакция экзотермическая). Отсюда можно заключить, что тепловой эффект образования НСl из простых веществ равен 92 кДж/моль. Напротив, образование оксида азота из простых веществ требует затрат энергии, этот процесс эндотермический.

О протекании химической реакции можно судить по ряду признаков, среди которых:

— выделение энергии (в виде теплоты или света),

Так, при взаимодействии медного купороса и щелочи:

выпадает синий осадок гидроксида меди(II), указывая на факт прохождения химической реакции. Образование осадка отмечено в уравнении реакции стрелкой, направленной вниз.

При взаимодействии соды и серной кислоты происходит “вскипание” раствора, вызванное бурным выделением углекислого газа:

Выделение газа обозначено в уравнении стрелкой, направленной вверх.

При взаимодействии магния с кислородом

признаками реакции являются: образование белого порошка (MgO) и выделение энергии в виде яркого света.

К каждому из заданий части 1 даны 4 варианта ответа, из которых только один правильный.

1. Сумма коэффициентов в уравнении реакции между оксидом натрия и оксидом фосфора(У) с образованием ортофосфата натрия равна

2. Сумма коэффициентов в уравнении реакции между натрием и водой равна

3. Сумма коэффициентов в уравнении реакции между алюминием и соляной кислотой равна

4. Сумма коэффициентов в уравнении реакции между кальцием и водой равна

5. Признаком химической реакции не является

1) выделение теплоты

2) изменение окраски

3) образование осадка

4) изменение объёма

6. Водород массой 2 г полностью провзаимодействовал с 16 г кислорода. На основании закона сохранения массы можно утверждать, что масса полученной при этом воды равна

7. Бром массой 80 г прореагировал с водородом массой 1 г. На основании закона сохранения массы веществ можно утверждать, что масса полученного бромоводорода равна

8. В реакцию с кислородом вступил водород массой 4 г. При этом получилось 36 г воды. Масса прореагировавшего кислорода равна

9. Сумма коэффициентов в уравнении реакции алюминия с хлором равна

10. Сумма коэффициентов в уравнении разложения пероксида водорода равна

11. Сумма коэффициентов в уравнении реакции между диоксидом углерода и избытком гидроксида кальция равна

12. Признаком химической реакции при взаимодействии растворов хлорида алюминия и аммиака является

1) выделение газа

2) изменение окраски раствора

3) образование осадка

4) выделение энергии в виде света

13. Признаком химической реакции при взаимодействии растворов хлорида железа(III) и едкого натра является

1) выделение газа

2) изменение окраски раствора

3) образование бурого осадка

4) образование белого осадка

14. Признаком химической реакции при взаимодействии растворов карбоната калия и азотной кислоты является

1) выделение газа

2) изменение окраски раствора

3) образование белого осадка

4) образование бурого осадка

15. Признаком химической реакции при взаимодействии растворов хлорида меди(II) и едкого натра является

1) выделение газа

2) изменение окраски раствора

3) образование белого осадка

4) образование голубого осадка

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

Закон сохранения массы веществ веществ. Химические уравнения
презентация к уроку по химии (8 класс) на тему

Презентация и конспект урока химии в 8 классе по теме “Закон сохранения массы веществ. Химические уравнения”

Скачать:

Вложение Размер
massa.ppt 1.29 МБ
konspekt_uroka_zsmv.doc 54 КБ
Предварительный просмотр:

Подписи к слайдам:

Предварительный просмотр:

Тема урока: « Химические уравнения. Закон сохранения массы веществ»

Тип урока: Открытие новых знаний

Авторы: Лисаченко Ю.С.

Основные цели урока:

1) Познакомить учащихся с признаками и условиями протекания химических реакций

2) Опытным путем доказать и сформулировать закон сохранения массы вещества

3) Дать понятие о химическом уравнении как об условной записи химической реакции с помощью химических формул

4) Начать формирование навыков составления химических уравнений

Демонстрационный материал и оборудование: весы, химические стаканы, реактивы ( растворы CuSO 4 , NaOH, HCl , СаСО 3 , фенолфталеин, Ва Сl 2 , Н 2 SO 4 ), компьютер, проектор,экран, презентация)

  1. Самоопределение к учебной деятельности:

– создать мотивацию к учебной деятельности посредством актуализации внутренних мотивов (могу и хочу)

– определить с учащимися содержательные рамки урока

Организация учебного процесса на этапе 1

  1. Как нам уже известно, химия — это наука о веществах. Что мы уже знаем о веществах? Достаточно ли нам этих знаний, чтобы ответить на все интересующие нас вопросы? Можем ли мы ответить на вопрос как происходят превращения веществ? По каким законам протекают химические реакции? Подумайте, чему будет посвящен сегодняшний урок?
  2. Верно! Сегодня мы отправимся с вами в удивительный мир химических превращений ! А помогут нам в этом полученные ранее на уроках химии знания.

2. Актуализация знаний и фиксация индивидуального затруднения в пробном действии:

– повторить материал, пройденный на прошлом уроке

– организовать самостоятельное выполнение пробного действия и зафиксировать возникшие затруднения

Организация учебного процесса на этапе 2

  1. Ранее мы узнали с вами что все явления в природе можно разделить на две группы. Какие это группы? Давайте вспомним с вами чем одни явления отличаются от других и приведем примеры (слайд)

Один ученик у доски выполняет задание. Игра «Крестики — нолики». Следует указать выигрышный путь, который составляют только химические явления ( слайд).

– Как еще можно назвать химические явления? (Химические реакции)

– А все ли мы знаем с вами о химических реакциях? (Нет)

  1. Сегодня на уроке мы продолжим изучать химические реакции. Предлагаю начинать наше путешествие в мир химических превращений.
  2. Как вы абсолютно верно заметили, отличительным признаком протекания химической реакции является образование нового вещества — продукта реакции — обладающего другими свойствами, которыми не обладали исходные вещества.
  3. Чем всегда сопровождается образование нового вещества? ( Признаками химической реакции)
  4. Сейчас нам снова понадобятся полученные ранее знания. Давайте вспомним, какие признаки протекания химически реакций нам уже известны и попробуем их продемонстрировать.

Совместно с учениками учитель показывает опыты в пробирках. Ученики называют наблюдаемые признаки, которые одновременно появляются на слайде.

– образование осадка ( CuSO 4 и NaOH)

– растворение осадка ( Cu(OH) 2 и HCl)

– изменение окраски (NaOH и фенолфталеин)

– выделение газа ( CaCO 3 и H 2 SO 4 )

– выделение тепла, света (реакция горения)

  1. Какой вывод мы можем сделать из увиденного? ( О протекании химической реакции можно судить по появлению внешних признаков).
  2. Предлагаю вам отразить на листе бумаги одну из приведенных химических реакций. Опишите происходящее в пробирке с помощью химических формул и математических знаков.
  3. Давайте посмотрим на ваши записи, рассмотрим полученные варианты. Почему получились разные варианты?

3. Выявление места и причины затруднения и постановка цели деятельности

  1. соотнести пробное действие с имеющимися знаниями, умениями и навыками учащихся
  2. согласовать тему и индивидуальные цели урока

Организация учебного процесса на этапе 3

  1. 1) Давайте разберемся, почему не всем удалось составить запись химической реакции? Чем это задание отличалось от тех, что вы выполняли ранее?
  2. 2) Итак, Какие цели урока мы сегодня поставим?
  3. А знаете ли вы как называется запись, отражающая суть химической реакции?
  4. Как мы сформулируем тему сегодняшнего урока?

4. Построение проекта выхода из затруднения

  1. создать условия для осознанного выбора учениками нового способа получения знаний посредством проведения эксперимента

Организация учебного процесса на этапе 4

  1. Итак, описать химическую реакцию с помощью химических формул и знаков мы сможем в том случае, если будем знать механизм превращения одних веществ в другие. Для решения данной задачи предлагаю совершить научное открытие! А для этого мы отправимся в далекий 18- й век, в лабораторию великого русского ученого М.В. Ломоносова ( слайд), который как и мы с вами был озадачен тем же вопросом: « Как одни вещества превращаются в другие и что при этом происходит с массой веществ? Будет ли масса исходных веществ равна массе продуктов реакции?»
  2. Скажите, как мы получали ранее новые знания?( Использовали учебник, таблицы, презентации и т.д.)
  3. А можно ли провести эксперимент для получения новых знаний? (Да)

5. Реализация построенного проекта

– провести эксперимент для открытия новых знаний

-обобщить наблюдения и сделать предварительные выводы

Организация учебного процесса на этапе 5

  1. Предлагаю провести эксперимент: ( учитель приглашает ученика к лабораторному столу)
  2. На платформу весов поставим два стаканчика — один с раствором BaCl 2 , другой с раствором H 2 SO 4 . Отметим положение стрелки весов маркером. Сливаем растворы в один стаканчик, а пустой ставим рядом.
  3. Прошла ли реакция при сливании двух растворов? (Да)
  4. Что свидетельствует об этом? (Образование белого осадка)
  5. Изменились ли показания стрелки прибора при этом? (Нет)
  6. Какой вывод мы можем сделать? Отличается ли масса полученных продуктов реакции от массы исходных веществ? ( Нет)
  7. К такому выводу пришел и Ломоносов, который с 1748 по 1756 год проделал огромную работу и экспериментальным путем доказал что масса веществ до и после реакции остается неизменной . В основе его экспериментов лежала реакция взаимодействия металлов с кислородом из воздуха при прокаливании. Сейчас мы просмотрим видеоролик, иллюстрирующий подобный эксперимент. ( слайд — ролик)

– Ребята, какой вывод мы можем теперь сделать? ( Масса веществ до реакции равна массе веществ после реакции)

– Данное утверждение является законом сохранения массы веществ. (Формулировка на слайде). Теперь мы можем уточнить, как полностью будет звучать тема нашего сегодняшнего урока? (Химические уравнения. Закон сохранения массы веществ)

Обратимся к учебнику ( с.139) и зачитаем формулировку закона сохранения массы веществ.

– Что же происходит с веществами в ходе химической реакции? Образуются ли новые атомы химических элементов? ( Нет, не образуются. Происходит лишь их перегруппировка!)

– А если число атомов до и после реакции остается неизменным, то их общая масса тоже неизменна. Убедимся в справедливости данного заключения посмотрев видеоролик (слайд-анимация)

– Теперь, зная закон сохранения массы веществ,мы с вами можем отражать суть химических реакций с помощью химических формул соединений.

– Ребята, как принято называть условную запись химической реакции с помощью химических формул и математических знаков? ( Химическим уравнением) (слайд)

– Давайте попробуем описать просмотренный в видеоролике опыт с прокаливанием меди. (ученик у доски записывает уравнение реакции).

– В левой части уравнения мы записываем исходные вещества ( формулы веществ , вступивших в реакцию). Какие вещества вступали во взаимодействие? ( Медь и кислород). Как мы помним союз «И» в математике заменяют знаком «плюс» (соединяем исходные вещества знаком «плюс») В правой части мы записываем продукты реакции. ( Оксид меди II). Между частями ставим стрелку:

– Вот как просто и красиво. но. неуважительно по отношению к закону сохранения массы веществ. Соблюдается ли он в данном случае? (Нет!) Равны ли массы веществ до и после реакции? (Нет ).

Сколько атомов кислорода в левой части? (2) , а в правой? (1). Поэтому перед формулой оксида меди мы должны поставить 2! – уравнять кислород.

– Но.. Теперь нарушено равенство для меди. Очевидно, что перед формулой меди тоже надо поставить 2.

– Мы уравняли число атомов каждого элемента в левой и правой частях? (Да!)

– Получили равенство? (Да)

Как называют такую запись? (Химическим уравнением)

6. Первичное закрепление с проговариванием во внешней речи:

-создать условия для фиксации изученного материала во внешней речи

Организация учебного процесса на этапе 6

– Давайте потренируемся составлять уравнения химической реакции и попробуем составить алгоритм действий. ( ученик у доски составляет уравнение химической реакции)

  1. Напишем реакцию образования аммиака из молекулы водорода и азота.
  1. В левой части уравнения записываем формулы веществ, вступивших в реакцию (реагентов). Затем ставим стрелку:
  1. В правой части ( после стрелки) записываем формулы веществ, образующихся в результате реакции ( продуктов).
  1. Уравнение реакции составляем на основе закона сохранения масс.
  2. Определяем, у какого элемента число атомов меняется? находим наименьшее общее кратное (НОК), делим НОК на индексы — получаем коэффициенты.
  3. Проставляем коэффициенты перед формулами соединений.
  4. Пересчитываем количество атомов, при необходимости действия повторяем.

3Н 2 + N 2 → 2NH 3

6. Самостоятельная работа с самопроверкой по эталону:

– организовать самостоятельное выполнение учащимися задания на новый способ действий с самопроверкой.

– организовать самооценку детьми правильности выполнения задания ( при необходимости — коррекцию возможных ошибок)

Организация учебного процесса на этапе 6

  1. Готовы попробовать свои силы? Тогда составьте самостоятельно уравнение химической реакции образования воды, расставив в уравнении недостающие коэффициенты

(слайд-анимация) — пример образования воды.

(на экране отображены исходные вещества — молекула водорода и молекула кислорода, затем появляется продукт реакции — молекула воды)

– Проверьте ( на экране появляются недостающие коэффициенты в уравнении реакции)

– У кого возникли затруднения? Что осталось непонятным?

7. Рефлексия учебной деятельности на уроке

– зафиксировать в речи новые термины ( химическая реакция, химическое уравнение) и формулировку закона сохранения масс

– зафиксировать неразрешенные на уроке затруднения как направление будущей учебной деятельности

– оценить собственную активность на уроке

– согласовать домашнее задание

Организация учебного процесса на этапе 7

– Чему был посвящен сегодняшний урок? Как звучала тема урока? Какие цели были нами поставлены и удалось ли их достигнуть?

– Где мы сможем применить полученные сегодня знания?

– Какие возникали затруднения? Удалось ли их преодолеть?Что осталось непонятным?

– Чью работу на уроке вы бы отметили? Как оцениваете свою работу?

п. 27, упр. 1, 2. Упражнения на карточках ( на следующем занятии ученики делают самопроверку по слайду-эталону на экране).

По теме: методические разработки, презентации и конспекты

Конспект урока химии в 8 классе. Тема: Закон сохранения массы веществ. Уравнения химической реакции.

Традиционный урок с использованием магнитной доски и демонстрационного эксперимента, доказывающего Закон сохранения массы веществ.

Урок по теме “Закон сохранения массы веществ.Уравнения химических реакций”

Урок химии в 8 классе по теме “Закон сохранения массы веществ.Уравнения химических реакций” .

Презентация к уроку по химии 8 класс “Закон сохранения массы веществ. Химические реакции “

Физические и химические явления, закон сохранения массы веществ, химические уравнения, типы химических реакций.(слайды к урокам)

Слайды к урокам: Физические и химические явления, закон сохранения массы веществ, химические уравнения, типы химических реакций.

Технологическая карта проблемно-диалогического урока химии в 8 классе. Тема урока “Закон сохранения массы веществ. Уравнения химических реакций”

Содержание урока позволяет сформировать понятие закона сохранения масс, научить составлять уравнения реакций. Использование проблемно-диалогического метода, обеспечивает творческое усвоение знаний уча.

Закон сохранения массы веществ. Химические уравнения. 8 класс

Цели:повторить с учащимися основные понятия темы «Соединения химических элементов», физические и химические явления;определить количественную сторону химических реакций в свете учения об а.

конспект урока химии в 8 классе ( ФГОС) Закон сохранения массы веществ. Химическое уравнение.

Урок открытия новых знаний! Который учит ребят ставить цели и задачи, анализировать и делать выводы. применять полученные знания в новой ситуации.

Химические явления. Закон сохранения массы веществ

Урок 26. Химия 8 класс

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока “Химические явления. Закон сохранения массы веществ”

Химические явления, или химические реакции, отличаются от физических тем, что в результате химических реакций происходит превращение одних веществ в другие. Причем, образовавшиеся вещества отличаются от исходных по своим свойствам. Например, железный гвоздь на воздухе ржавеет, ржавчина – это уже не железо, а совсем другое вещество, отличающееся по свойствам от железа. С химическими явлениями мы встречаемся и в повседневной жизни: скисание молока, гниение листьев, фотосинтез.

Признаки химических реакций: выпадение осадка, выделение газа, появление запаха, выделение или поглощение теплоты, появление света, изменение цвета.

Проследим за протеканием химических реакций и установим признаки, которые подтверждают образование новых веществ и появление у них новых свойств.

Например, при растворении никеля в соляной кислоте, образуется раствор соли изумрудно-зеленого цвета. Образование новых веществ говорит о том, что прошла химическая реакция, признак ее изменение цвета.

Добавив в раствор сульфида натрия соляной кислоты, появляется запах тухлых яиц. Это запах сероводорода. Признак этой реакции – появление запаха, а образование сероводорода говорит о том, что это химическое явление.

Если к бесцветному раствору йодида калия добавить бесцветный раствор нитрата свинца (II), то образуется две новые соли и выпадает осадок желтого цвета.

Химическое явление можно наблюдать, если кусочек мела бросить в раствор соляной кислоты. При этом наблюдается бурное выделение углекислого газа.

А железный гвоздь, опущенный в раствор соляной кислоты, покрывается пузырьками, эти пузырьки – водород.

Если мы к раствору медного купороса добавим щелочь, то у нас образуется осадок голубого цвета. Прилив к этому осадку раствор кислоты, он раствориться. Эти признаки свидетельствуют о том, что прошла химическая реакция.

Смешаем порошки серы и железа, но новые вещества не образуются, а просто будет смесь веществ, которую можно разделить на компоненты с помощью магнита, или смешав с водой. Под действием магнита, железные опилки притягиваются к нему, а сера нет. При растворении в воде сера всплывает вверх, а железные опилки опустятся вниз. Но если исходную смесь нагреть, то происходит между ними химическая реакция, которая сопровождается выделением большого количества теплоты и образуется новое вещество – FeS – сульфид железа (II). Оно серого цвета, тонет в воде и не притягивается магнитом. Поэтому это явление, горение железных опилок и серы, является химическим.

Если же в ложечке сжечь серу, но она загорится синим пламенем, при этом выделяется теплота и свет, появляется запах жженой серы, эти признаки тоже свидетельствуют о том, что процесс горения серы относится к химическим явлениям.

Реакция горения магния идет очень быстро, он горит ослепительным пламенем с образованием нового вещества – оксида магния. Фосфор тоже сгорает в кислороде с образованием оксида фосфора (V).

Реакции, которые протекают с выделение теплоты и света, называются реакциями горения.

Кроме того, реакции, протекающие с выделением теплоты, называются экзотермическими (экзо – наружу), а реакции, протекающие с поглощением теплоты, называются эндотермическими (эндо – внутрь). К эндотермическим реакциям относится реакция разложения оксида ртути (II). Оксид ртути (II) представляет собой вещество красного цвета. При нагревании образуется кислород, который улетучивается и ртуть – металл серебристо-белого цвета.

Чтобы химическая реакция прошла, необходимы определенные условия:

· Необходимо, чтобы реагирующие вещества соприкоснулись, чем больше будет площадь их соприкосновения, тем быстрее пойдет реакция, для этого твердые вещества измельчают и перемешивают, а растворимые – растворяют и сливают растворы;

· Нагревание – второе условие, которое в основном необходимо для эндотермических реакций, для экзотермических оно необходимо для начала реакции, а в некоторых случаях и вовсе не нужно;

· Некоторые реакции не протекают без света, электрического тока. Например, для процесса фотосинтеза – свет – это необходимое условие.

В 1748 г. М.В. Ломоносов открыл закон сохранения массы веществ, который гласит: масса веществ, вступивших в химическую реакцию, равна массе веществ, получившихся в результате ее.

Носителями массы веществ являются атомы химических элементов, из которых состоят как вещества, которые вступают в химическую реакцию (реагенты), так и вещества, образовавшиеся в результате реакции (продукты реакции). При химических реакциях атомы не разрушаются и не образуются, а происходит только их перегруппировка.

Для подтверждения своего закона Ломоносов провел следующий опыт: в специальный сосуд налил соляную кислоту и щелочь – гидроксид натрия. К раствору щелочи налил несколько капель фенолфталеина и раствор щелочи окрасился в малиновый цвет. Закрыл сосуд пробкой, взвесил, а затем слил растворы. При этом окраска малиновая исчезла, т.к. прошла химическая реакция, а масса продуктов реакции оказалась такой же, как и исходная.

Подтверждение закона сохранения массы веществ

Мы можем сами доказать справедливость этого закона. Уравновесим на весах колбу с раствором хлорида железа (III), в которую опущена пробирка с гидроксидом натрия. Взвесим колбу. Смешаем растворы, у нас появляется осадок бурого цвета – гидроксид железа (III). Появление осадка говорит о том, что прошла химическая реакция. Взвесим колбу снова и видим, что масса не изменилась.

Закон сохранения массы веществ является основным законом химии. На основании этого закона составляют уравнения химических реакций и проводят расчеты по уравнениям.

Подготовка к ОГЭ по химии 9 класс

Химические реакции. Признаки, классификация, уравнения.

Химические вещества различаются по своим свойствам: цвету, температуре плавления и кипения, плотности, растворимости, тепло- и электропроводности – это физические свойства, а также окислительно-восстановительным и кислотно-основным свойствам – это химические свойства.

Явления, наблюдающиеся в ходе изменения веществ, делятся на:
– физические (изменяются размер и/или форма тела или агрегатное состояние вещества; не сопровождаются образованием новых веществ);
– химические (сопровождаются превращением одних веществ в другие вещества).
Химические реакции – это превращения одних веществ в другие вещества.

Признаки химических реакций:
1) выпадение или растворение осадка;
2) выделение газа;
3) изменение цвета;
4) свечение;
5) выделение или поглощение тепла;
6) звук;
7) появление запаха.

В химических реакциях проявляются химические свойства вещества. Для всех химических процессов с участием нескольких веществ необходимо их соприкосновение (контакт). В некоторых случаях требуется нагревание, облучение светом, пропускание электрического тока или использование катализаторов. Катализатор – это вещество, ускоряющее реакцию, но не входящее в состав реагентов или продуктов реакции.

Химические реакции изображают схемами (описывают реакцию только качественно), либо уравнениями (отражают количественные соотношения веществ).
Химическое уравнение -это условная запись химической реакции с помощью химических формул и математических знаков.
Хотя реагенты (вещества, вступившие в химическую реакцию) и продукты (вещества, образовавшиеся в результате реакции) имеют разные формулы, но число и виды атомов в их составе не изменяются. Если качественно и количественно атомы не изменяются, то и масса веществ в ходе реакции не изменяется.

Закон сохранения массы: масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции. (М.В.Ломоносов, 1748г.)

Уравнение химической реакции составляется на основе закона сохранения массы веществ и означает материальный баланс между реагентами и продуктами реакции. С целью соблюдения закона в уравнениях расставляют коэффициенты, уравнивающие количество атомов каждого элемента в левой и правой частях уравнения.

Классификация химических реакций по тепловому эффекту:
1) реакции экзотермические – реакции, сопровождающиеся выделением тепла.
В термохимических уравнениях выделение тепла обозначается ” + Q” или ” + число кДж”.
Все реакции горения сопровождаются выделением тепла.
2) реакции эндотермические – реакции, сопровождающиеся поглощением тепла.
В термохимических уравнениях поглощение тепла обозначается ” – Q” или ” – число кДж”.
Большинство реакций разложения являются эндотермическими.

Классификация химических реакций по наличию катализатора:
1) каталитические реакции- реакции, протекающие в присутствии катализатора.
Наличие катализатора указывается как условие над стрелкой в уравнении реакции.
2) некаталитические реакции – реакции, протекающие без катализатора.

Классификация химических реакций по агрегатному состоянию реагирующих веществ:
1) гомогенные реакции – реакции между веществами, находящимися в одинаковом агрегатном состоянии (газ – газ, жидкость – жидкость, твёрдое вещество – твёрдое вещество);
2) гетерогенные реакции – реакции между веществами, находящимися в разных агрегатных состояниях (газ – жидкость, газ – твёрдое вещество, жидкость – твёрдое вещество).

Классификация химических реакций по обратимости:
1) необратимые реакции протекают только в одном направлении – в сторону образования конечных продуктов. При этом хоть одно из исходных веществ полностью расходуется.
Например, реакции ионного обмена протекают необратимо, если в результате реакции образуется газ, малодиссоциирующее вещество (в т.ч. вода) или нерастворимое веществ (осадок). (правило Бертолле)
В уравнениях необратимых реакций между исходными веществами и продуктами реакции ставится знак “=”.
2) обратимые реакции протекают одновременно в двух направлениях: в прямом – в сторону образования продуктов реакции, и в обратном – в сторону образования исходных веществ.
В уравнениях обратимых реакций между исходными веществами и продуктами реакций ставятся противоположно направленные стрелки.

Классификация химических реакций по изменению степеней окисления:
1) окислительно-восстановительные реакции протекают с изменением степеней окисления элементов, входящих в состав реагирующих веществ (окислителя и восстановителя).
К окислительно-восстановительным относятся все реакции, в которых участвуют или образуются простые вещества;
2) реакции, идущие без изменения степеней окисления.
Все реакции обмена протекают без изменения степеней окисления.

Классификация химических реакций по числу и составу исходных веществ и продуктов реакции:
1) реакции соединения – реакции, в результате которых из нескольких веществ образуется одно сложное вещество;
2) реакции разложения – реакции, в результате которых из одного сложного вещества образуется несколько новых веществ;
3) реакции замещения – реакции, в результате которых атомы простого вещества замещают атомы одного из элементов в составе сложного вещества;
4) реакции обмена – реакции, в результате которых два сложных вещества обмениваются своими составными частями. Частным случаем реакций обмена являются реакции нейтрализации – это реакции между растворами кислоты и щёлочи, приводящие к образованию соли и воды.

Химические реакции: типы, свойства, уравнения

Содержание:

Характеристика реакций

Химические реакции, их свойства, типы, условия протекания и прочая, являются одним из краеугольных столпов интересной науки под названием химия. Попробуем же разобрать что такое химическая реакция, и какова ее роль. Итак, химической реакцией в химии принято считать превращение одного либо нескольких веществ, в другие вещества. При этом ядра атомов у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.

Реакции в природе и быту

Мы с вами окружены химическими реакциями, более того мы сами их регулярно осуществляем различными бытовыми действиями, когда например, зажигаем спичку. Особенно много химических реакций сами того не подозревая (а может и подозревая) делают повара, когда готовят еду.

Разумеется, и в природных условиях проходит множество химических реакций: извержение вулкана, фотосинтез листвы и деревьев, да что там говорить, практически любой биологический процесс можно отнести к примерам химических реакций.

Типы реакций

Все химические реакции можно условно разделить на простые и сложные. Простые химические реакции, в свою очередь, разделяются на:

  • реакции соединения,
  • реакции разложения,
  • реакции замещения,
  • реакции обмена.

Далее мы подробно остановимся на каждом из этих видов химических реакций, известных химии.

Реакция соединения

По весьма меткому определению великого химика Д. И. Менделеева реакция соединения имеет место быть когда «их двух веществ происходит одно». Примером химической реакции соединения может быть нагревание порошков железа и серы, при которой из них образуется сульфид железа – Fe+S=FeS. Другим ярким примеров этой реакции является горение простых веществ, таких как сера или фосфор на воздухе (пожалуй, подобную реакцию можно также назвать тепловой химической реакцией).

Реакция разложения

Тут все просто, реакция разложения является противоположностью реакции соединения. При ней из одного вещества получается два или более веществ. Простым примером химической реакции разложения может быть реакция разложение мела, в ходе которой из собственно мела образуется негашеная известь и углекислый газ.

Реакция замещения

Реакция замещения осуществляется при взаимодействии простого вещества со сложным. Приведем пример химической реакции замещения: если опустить стальной гвоздь в раствор с медным купоросом, то в ходе этого простого химического опыта мы получим железный купорос (железо вытеснит медь из соли). Уравнение такой химической реакции будет выглядеть так:

Реакция обмена

Реакции обмена проходят исключительно между сложными химическими веществами, в ходе которых они меняются своими частями. Очень много таких реакций имеют место быть в различных растворах. Нейтрализация кислоты желчью – вот хороший пример химической реакции обмена.

Так выглядит химическое уравнение этой реакции, при ней ион водорода из соединения HCl обменивается ионом натрия из соединения NaOH. Следствием этой химической реакции является образование раствора поваренной соли.

Признаки реакций

По признакам протекания химических реакций можно судить прошла ли химическая реакция между реагентами или нет. Приведем примеры признаков химических реакций:

  • Изменение цвета (светлое железо, к примеру, во влажном воздухе покрывается бурым налетом, как результат химической реакции взаимодействия железа и кислорода).
  • Выпадение осадка (если вдруг через известковый раствор пропустить углекислый газ, то получим выпадение белого нерастворимого осадка карбоната кальция).
  • Выделение газа (если Вы капнете на пищевую соду лимонной кислотой, то получите выделение углекислого газа).
  • Образование слабодиссоциированных веществ (все реакции, в результате которых образуется вода).
  • Свечение раствора (примером тут могут служить реакции, происходящие с раствором люминола, излучающего при химических реакциях свет).

В целом, трудно выделить какие признаки химических реакций являются основными, для разных веществ и разных реакций характерны свои признаки.

Как определить признак реакции

Определить признак химической реакции можно визуально (при изменении цвета, свечении), или по результатам этой самой реакции.

Скорость реакции

Под скоростью химической реакции обычно понимают изменение количества одного из реагирующих веществ за единицу времени. Притом, скорость химической реакции всегда положительная величина. В 1865 году химиком Н. Н. Бекетовым был сформулирован закон действия масс гласящий, что «скорость химической реакции в каждый момент времени пропорциональна концентрациям реагентов, возведенным в степени, равные их стехиометрическим коэффициентам».

К факторам скорости химической реакции можно отнести:

  • природу реагирующих веществ,
  • наличие катализатора,
  • температуру,
  • давление,
  • площадь поверхности реагирующих веществ.

Все они имеют самое прямое влияние на скорость протекания химической реакции.

Равновесие реакции

Химическим равновесием называют такое состояние химической системы, при котором протекает несколько химических реакций и скорости в каждой паре прямой и обратной реакции равны между собой. Таким образом, выделяется константа равновесия химической реакции – это та величина, которая определяет для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия можно определить направление протекания химической реакции.

Условия возникновения реакций

Чтобы положить начало химических реакций, необходимо для этого создать соответствующие условия:

  • приведение веществ в тесное соприкосновение.
  • нагревание веществ до определенной температуры (температура химической реакции должна быть подходящей).

Тепловой эффект химической реакции

Так называют изменение внутренней энергии системы как результат протекания химической реакции и превращения исходных веществ (реактантов) в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях:

  • единственно возможной работой при этом есть только лишь работа против внешнего давления.
  • исходные вещества и продукты, полученные в результате химической реакции, имеют одинаковую температуру.

Видео

И в завершение интересно видео про самые удивительные химические реакции.

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Эта статья доступна на английском языке – Chemical Reactions.

Похожие посты:

  • Макроскопическая кинетика
  • Алканы – определение, строение, физические и химические свойства
  • Как расставлять коэффициенты в химических уравнениях
  • Химическая связь: определение, типы, свойства
  • Химическая реакция

4 комментария

Спасибо за статью, хотелось бы также больше узнать про химические реакции ферментов и необратимые химические реакции.

Пожалуй эти темы заслуживают отдельной статьи.

1. Вы пишете: “Зная константу равновесия можно определить направление протекания химической реакции.” Одного знания константы равновесия бывает недостаточно. В общем случае, необходимо знать еще концентрации веществ.
2. Про тепловой эффект реакции сразу видно, что переписан без пояснений соответствующий абзац из учебника. Может даже не школьного. Но народу будет не до конца понятно.
3. В начале статьи вы заикаетесь о биохимических реациях и далее даже говорите о том, что есть сложные реакции. И далее не слова про них. Интуитивно понятно, что сложные реакции это совокупность нескольких. Но по хорошему надо бы хотя бы обозначить определение. И пару предложений сказать про биохимические реакции
4. Вы пишете: “К факторам скорости химической реакции можно отнести:

природу реагирующих веществ,
наличие катализатора,
температуру,
давление,
площадь поверхности реагирующих веществ.

Все они имеют самое прямое влияние на скорость протекания химической реакции.” Перфекционисту, такое утверждение будет резать слух. Например, вы ничего не говорите о концентрациях, а также не разделяете гомогенные и гетерогенные реакции-для них немного разный набор влияющих факторов. Некоторые из указанных вами факторов не так сильно влияют на скорость (если влияют вообще).
4. Указывая признаки протекания химической реакции вы выделяете яркие, заметные но не всегда проявляемые факторы, а также не эти признаки являются фундаментальным признаком протекания химической реакции. Таковым является изменение количества(концентрации) реагирующих веществ. И именно эти изменения фиксируют, т.н. кинетические кривые, снимаемые по ходу реакции графики зависимости какого-либо параметра от количества вещества.
5. Если уж вас спросили в комментариях, и вы сами вкратце касаетесь понятия химического равновесия и т.н. константы равновесия можете в дальнейшем указать, что необратимые это те реакции, у которых очень большое значение константы равновесия.

И еще предложение “При этом ядра атомов у них не меняются (в отличие от реакций ядерных), зато происходит перераспределение электронов и ядер, и, разумеется, появляются новые химические элементы.” Перечитайте! Кто отличает ядерные реакции от химических (условно говоря, 90% школьников) им это предложение ни к чему. А кто захочет разобраться (те самые 10% кто не различает ядерные и химические реакции) они ничего не поймут!

Как решать химические уравнения – схемы и примеры решения для разных реакций

Основные термины и понятия

Составление уравнений химических реакций невозможно без знания определённых обозначений, показывающих, как проходит реакция. Объединение атомов, имеющих одинаковый ядерный заряд, называют химическим элементом. Ядро атома состоит из протонов и нейтронов. Первые совпадают с числом атомного номера элемента, а значение вторых может варьироваться. Простейшими веществами называют элементы, состоящие из однотипных атомов.

Любой химический элемент описывается с помощью символов, условно обозначающих структуру веществ. Формулы являются неотъемлемой частью языка науки. Именно на их основе составляют уравнения и схемы. По своей сути они отражают количественный и качественный состав элементов. Например, запись HNO3 сообщает, что в соединении содержится одна молекула азотной кислоты, а оно само состоит из водорода, азота и кислорода. При этом в состав одного моля азотной кислоты входит по одному атому водорода и азота и 3 кислорода.

Символика элементов, условное обозначение, представляет собой химический язык. В значке содержится информация о названии, массовом числе и порядковом номере. Международное обозначение принято, согласно периодической таблице Менделеева, разработанной в начале 1870 года.

Взаимодействующие между собой вещества называются реагентами, а образующиеся в процессе реакции — продуктами. Составление и решение химических уравнений фактически сводится к определению результатов реакций, поэтому просто знать формулы веществ мало, нужно ещё уметь подбирать коэффициенты. Располагаются они перед формулой и указывают на количество молекул или атомов, принимающих участие в процессе. С правой стороны от химического вещества ставится индекс, указывающий место элемента в системе.

Записывают уравнения в виде цепочки, в которой указываются все стадии превращения вещества начиная с левой части. Вначале пишут формулы элементов в исходном состоянии, а затем последовательно их преобразование.

Виды химических реакций

Химические явления характеризуются тем, что из двух и более элементов образуются новые вещества. Уравнения описывают эти процессы. Впервые с объяснениями протекания реакций знакомят в восьмом классе средней образовательной школы на уроках неорганической химии. Ученикам демонстрируют опыты, в которых явно наблюдаются различия в протекании реакций.

Всего существует 4 типа химического взаимодействия веществ:

  1. Соединение. В реакцию могут вступать 2 простых вещества: металл и неметалл или неметалл и неметалл. Например, алюминий с серой образуют сульфид алюминия. Кислород, взаимодействуя с водородом, превращается в воду. Объединятся могут 2 оксида с растворимым основанием, как оксид кальция с водой: CaO + H2O = Ca (OH)2 или основной оксид с кислотным: CaO + SO3 = CaSO4.
  2. Разложение. Это процесс обратный реакции соединения: было одно вещество, а стало несколько. Например, при пропускании электрического тока через воду получается водород и кислород, а при нагревании известняка 2 оксида: CaCO3 = CaO + CO2.
  3. Замещение. В реакцию вступают 2 элемента. Один из них простой, а второй сложный. В итоге образуются 2 новых соединения, при котором атом простого вещества заменяет сложный, как бы вытесняя его. Условие протекания процесса: простое вещество должно быть более активным, чем сложное. Например, Zn + 2HCl = ZnCl2 + H2. Величину активности можно узнать из таблицы ряда электрохимических напряжений.
  4. Обмен. В этом случае между собой реагируют 2 сложных элемента, обменивающиеся своими составными частями. Условием осуществления такого типа реакции является обязательное образование воды, газа или осадка. Например, CuO + 2HCl = CuCl2 + H2O. Чтобы узнать, смогут ли вещества прореагировать, используют таблицу растворимости.

Основными признаками химических реакций является изменение цвета, выделение газа или образование осадка. Различают их по числу веществ, вступивших в реакцию и образовавшихся продуктов. Правильное определение типа реакции особо важно при составлении химических уравнений, а также определения свойств и возможностей веществ.

Окислительно-восстановительный процесс

Составление большинства реакций сводится к подбору коэффициентов. Но при этом могут возникнуть трудности с установлением равновесия, согласно закону сохранения массы веществ. Чаще всего такая ситуация возникает при решении заданий, связанных с расстановкой количества атомов в уравнениях окислительно-восстановительных процессов.

Под ними принято понимать превращения, протекающие с изменением степени окисления элементов. При окислении происходит процесс передачи атомом электронов, сопровождающийся приобретением им положительного заряда или ионом, после чего он становится нейтральным. При этом также происходит процесс восстановления, связанный с присоединением элементарных частиц атомом.

Для составления уравнений необходимо определить восстановитель, окислитель и число участвующих в реакции электронов. Коэффициенты же подбирают с помощью метода электронно-ионного баланса (полуреакций). Его суть состоит в установлении равенства путём уравнивания количества электронов, отдаваемых одним элементом и принимаемым другим.

Классический алгоритм

В основе решения задач этим методом — закон сохранения массы. Согласно ему, совокупная масса элементов до реакции и после остаётся неизменной. Другими словами, происходит перегруппировка частиц. Если рассматривать решение химического уравнения поэтапно, оно будет состоять из трёх шагов:

  1. Написания формул элементов, вступающих в реакцию с левой стороны.
  2. Указания справа формулы образующихся веществ.
  3. Уравнивания числа атомов с добавлением коэффициентов.

Перед тем как переходить к сложным соединениям, лучше всего потренироваться на простых. Например, нужно составить уравнение, описывающее взаимодействие двух сложных веществ: гидроксида натрия и серной кислоты. При таком соединении образуется сульфат натрия и вода.

Согласно алгоритму, в левой части уравнения необходимо записать реагенты, а в правой продукты реакции: NaOH + H2SO 4 → Na 2SO4 + H2O. Теперь следует уравнять коэффициенты. Начинают с первого элемента. В примере это натрий. В правой части содержится 2 его атома, а в левой один, поэтому необходимо возле реагента поставить цифру 2. Затем нужно уровнять водород. В результате получится выражение: 2 NaOH + H2SO 4 → Na2 SO4 +2H2O.

Ещё одним наглядным примером является процесс реакции тринитротолуола с кислородом. При их взаимодействии образуется: C7H5N3O6 + O2 → CO2 + H2O + N2. Исходя из того, что слева находится нечётное число атомов H и N, а справа чётное, нужно их уравнять: 2C7H5N3O6 + O2 → CO2 + H2O + N2.

Теперь становится понятным, что 14 и 10 атомов углерода и водорода должны образовать 14 долей диоксида и 5 молекул воды. При этом 6 атомов азота превратятся в 3. Итоговое уравнение будет выглядеть как 2C7H5N3O6 + 10,5O2 → 14CO2 + 5H2O + 3N2.

Перед тем как начинать тренировку по составлению уравнений, следует научиться расставлять валентность. Это параметр, равный числу соединившихся атомов каждого элемента. Фактически это способность к соединению. Например, в формуле NH3 валентность атома азота равна 3, а водорода 1.

Решение методом полуреакций

Алгоритм для решения примеров химических уравнений проще рассмотреть на конкретном задании. Пускай необходимо описать процесс окисления пирита азотной кислоты с малой концентрацией: FeS2 + HNO3. Решать этот пример необходимо в следующей последовательности:

  1. Определить продукты реакции. Так как кислота является сильным окислителем, сера получит максимальную степень оксидации S6+, а железо Fe3+. HNO3 может восстановиться до одного из двух состояний NO2 или NO.
  2. Исходя из состава ионов и правила, что вещества, переходящие в газовую форму или плохо растворимые, записываются в молекулярном виде, верным будет записать: FeS2 — Fe3+ + 2SO2−4. Гидролизом можно пренебречь.
  3. В записи уравнивают кислород. Для этого в левую часть добавляют 8 молекул воды, а в правую 16 ионов водорода: FeS2 + 8H20 — Fe3+ + 2SO2−4 + 16H+. Так как заряда в левой части нет, а в правой он равный +15, то серное железо должно будет отдать 15 электронов. Значит, уравнение примет вид: FeS2 + 8H20 — 15e → Fe3+ + 2SO2−4 + 16H+.
  4. Теперь переходят к реакции восстановления нитрата иона: NO-3 →NO. Для её составления нужно отнять у оксида азота 2 атома кислорода. Делают это путём прибавления к левой части 4 ионов водорода, а правой — 2 молекул воды. В итоге получится: NO-3 + 4H+ → NO + 2H2O.
  5. Полученную формулу уравнивают добавлением к левой части 3 электронов: NO-3 + 4H+ 3e → NO + 2H2O.
  6. Объединяют найденные выражения и записывают результат: FeS2 + 8H20 + 5NO-3 + 20H+ → Fe3+ + 2SO2−4 + 16H+ + 5NO + 10H2O.

Уравнение можно сократить на 16H + и 8H2O. В итоге получится сокращённое выражение окислительно-восстановительной реакции: FeS2 + 5NO – 3 + 4 H + = Fe3 + + 2SO 2- 4 + 5NO + 2H2O.

  • Добавив в обе части нужное количество ионов, записывают молекулярное уравнение: FeS2 + 8HNO3 = Fe (NO 3) 3 + 2H2SO4 + 5NO + 2H2O.
  • Такой алгоритм считается классическим, но для упрощения понимания лучше использовать способ электронного баланса. Процесс восстановления переписывают как N5+ + 3e → N2+. Степень же окисления составить сложнее. Сере нужно приписать степень 2+ и учесть, что на 1 атом железа приходится 2 атома серы: FeS2 → Fe3++ 2S6+. Запись общего баланса будет выглядеть: FeS2 + 5N5+ = Fe3+ + 2S6+ + 5N2+.

    Пять молекул потратятся на окисление серного железа, а ещё 3 на образование Fe (NO3)3. После уравнения двух сторон запись реакции примет вид, аналогичный полученному с использованием предыдущего метода.

    Использование онлайн-расчёта

    Простые уравнения решать самостоятельно довольно просто. Но состоящие из сложных веществ могут вызвать трудности даже у опытных химиков. Чтобы получить точную формулу и не подбирать вручную коэффициенты, можно воспользоваться онлайн-калькуляторами. При этом их использовать сможет даже пользователь, не особо разбирающийся в науке.

    Чтобы расстановка коэффициентов в химических уравнениях онлайн происходила автоматически, нужно лишь подключение к интернету и исходные данные. Система самостоятельно вычислит продукты реакции и уравняет обе стороны формулы. Интересной особенностью таких сайтов является не только быстрый и правильный расчёт, но и описание правил с алгоритмами, по которому выполняются действия.

    После загрузки калькулятора в веб-обозревателе единственное, что требуется от пользователя — правильно ввести реагенты в специальные формы латинскими буквами и нажать кнопку «Уравнять». Иногда возникает ситуация, когда запись сделана верно, но коэффициенты не расставляются. Это происходит, если суммы в уравнении могут быть подсчитаны разными способами. Характерно это для реакций окисления. В таком случае нужно заменить фрагменты молекул на любой произвольный символ. Таким способом можно не только рассчитать непонятное уравнение, но и выполнить проверку своих вычислений.

    Читайте также:
    Взаимосвязь различных классов неорганических веществ
    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: