Лекция 4.5

Лекция 4 5.1 Понятие процесса

Процесс (задача), как базовое понятие современных ОС – это программа в стадии выполнения.

Программа,в общем случае,это набор команд (сообщение) о последовательностидействий по получению, преобразованию, обработке, выдаче данных. Выполнение программы реализуется через промежуточные процессы. Процесс собирает и хранит адреса областей на внешних устройствах и оперативной памяти где располагаетюданные (переменные и константы) и куда их нужно направить. С каждым процессом связывается его адресное пространство: список адресов от минимума до максимума, который процесс может прочесть и в которые он может писать. Также он имеет адреса свободной динамической памяти: куча (heap) и стек (stack), в которых будут хранится данные расчетов. В стеке сидят указатели на адреса данных. В «куче» находятся сами структуры данных, которые бывают различными, «запись» и «масив» и т.д.Область стека примыкает к куче расширяется за ее счет.

В адресное пространство входят сама программа, данные к ней, ее стек. Со всяким процессом связывается некий набор регистров, включая счетчик команд, указатель стека и другие. Одна и таже программа написанная на языке высокого уровня на разных компьтерах будет иметь разные процессы, так у нее будут различные стеки, кучи, адресные области данных и команд. В любой момент времени каждый процесс имеет однозначное состояние, описываемое адреесми регистров процессора, областей кода, данных, кучи и стека, счетчиком ккоманд, указывающего следующую к исполнению команду. Эта информация называется контекстом процесса.То, какие регистры и указатели реально используются процессом зависит от самого процессора и компонент операционной системы, взаимодействующих с ним.

5.2Частным проявлением процесса являются потоки (threads). Потоки порождаются процессом если есть возможность параллельно выполнять различные части программы на томже самом или разных процессорах и устройствах. Потоки это «дочки процесса» (childprocess ). Потоки используют даные и переменные их родного процесса, но имееют свои контекст кода программы и стека.Процессы создаются при выполненииипребразованийпрограммы до машинного кода с использованием составных части операционной системы как компиляторы, драйверы связывания с библиотеками ОС (linking), загрузчики (loading), драйверы файловой системы (запись/чтение на носители),драйверы исполнения (execution). После каждой операции объем программы заметно возрастает, а сама программа получает другое имя расширения – obj, lnk, exe. С этими процеесами мы сталкиваемся каждый раз при «установке» программы.

Процесс представляет собой отдельныйфайл, которыйво время исполнения имеет в памяти свои независимые области для кода и данных. В отличие от него потоки мо­гут пользоваться общими участками кода и данных. Так как множество потоков способ­но размещаться внутри одного EXE-модуля, это позволяет экономить ре­сурсы как внешней, так и внутрен­ней памяти.

Современные управляющие устройства состоят из нескольких вычислительных процессоров, соединенных между собой с помощью шины связи. Например, в програмируемх контроллерах есть основной процессор, но в каждом модуле ввода/вывода (МВА, МВД, МВВА, МВДА и другие) есть свой собственный процессор. Можно заставить программу пытаться паралельно исполнять операции уже на стадии написания программы.

Пара операторных скобок cobeginиcoendприводит к генерации параллельных потоков в рамках многозадачных систем. Для однозадачной системы конечный Х был бы равен 3. Для случая паралельных потоков результат предсказать нельзя. Какая команда выполнится последней таково и будет значение Х.

В период своего существования процесс проходит через ряд дискретных состояний: – выполняется, если в данный момент времени ему выделен ЦП – готов, если он мог бы сразу использовать ЦП, предоставленный в его распоряжение – блокирован, если он ожидает появление какого-либо события

5.3Когда в операционную систему поступает какое то задание на выполнение программы, она создает соответствующие процессы, которые затем устанавливаются в конец списка готовых процессов. Этот процесс постепенно продвигается к головной части списка по мере завершения выполнения предыдущих процессов. Когда процесс окажется первым в списке готовых и когда освобождается ЦП, этому процессу выделяется ЦП, и происходит смена состояния процесса (переходит из состояния готовности в состояние выполнения). Чтобы предотвратить либо монопольный захват ресурсов компьютера каким-то одним процессом, ОС устанавливает в специальном аппаратном таймере прерываний временной интервал, в течении которого любому процессу разрешается занимать ЦП. Если процесс добровольно не освобождает ЦП в течение указанного временного интервала, таймер вырабатывает сигнал прерывания, по которому управление будет передано ОС. После этого ОС переведет ранее выполнявшийся процесс в состояние готовности, а первый процесс списка готовых – в состояние выполнения.

Представителем процесса в ОС является блок управления процессом (дескриптор процесса). Это структура данных, содержащая: идентификатор процесса, приоритет процесса, состояние, указатели памяти, указатели выделенных ресурсов. Когда ОС переключает ЦП с процесса на процесс, она использует области сохранения регистров, предусмотренные в блоке управления процессом, чтобы запомнить информацию, необходимую для рестарта каждого процесса, необходимую при следующем обращении процесса к ЦП.ОС предусматривает следующие операции над процессами: Создание, – Уничтожение, – Возобновление, – Блокирование, – Пробуждение, – Выбор

5.4 Во время выполнения процесса может быть многократно прервана и продолжена его работа. Чтобы возобновить выполнение процесса, необходимо возобновить контекст процесса, который хранится операциой системой. Еще раз: у процесса есть адресное пространство, содержащее текст программы и данные, есть открытые файлы, дочерние процессы, аварийные сообщения.С другой стороны, это поток команд на исполнение. У этого потока есть свой счетчик команд, свои регистры, с текущими переменными, стек, содержащий истрию выполнения процесса исполняемой программы. Концепция потока добавляет процессу возможность выполнения в одной и той же среде процесса нескольких независимых программ.В ОС нет однозначного соответствия между процессами и программами, т.е. один программный файл может породить несколько параллельно выполняемых процессов, а поток в ходе выполнения может сменить программный файл и начать выполнять другую программу.

Лекция 5. 6.1Понятие ресурса, так же как и понятие процесса, являетсяосновным при рассмотрении операционных систем. Ресурсом называется всякий объект, который может распределяться внутри системы. Ресурсы могут быть разделяемыми, когда несколько процессов могут их исполь­зовать одновременно (в один и тот же момент времени) или параллельно (в течение некоторого интервала времени процессы используют ресурс поперемен­но), а могут быть и неделимыми.

Ресурсами считатся процессорное время, память, каналы ввода/вывода, периферийные устройства. К ресурсам относят и такие объекты, как сообщения и синхросигналы, которыми обмениваются задачи. Операционная система использует ресурсы пу­тем организации к ним очередей запросов. В памяти находятся очередь из несколько процессов, ожидающих процессор, и несколькихпроцессов, готовых использовать другие ресурсы, как только они станут доступными.

Читайте также:
Лекция 2.4

Задача (т.е процесс или поток) обращается к супервизору операционной системы — ее центральному управляющему моду­лю, посредством специальных запросов (вызовов и команд) и сообщает о своем тре­бовании. При этом указывается приоритет, вид ресурса и его объем. Приоритет – это целое число, присваиваемое задаче и характеризую­щее ее важность по сравнению с други­ми задачами, выполняемыми в системе. Приоритет используется планировщиком задач для определе­ния того, какая из готовых к работе за­дач должна получить управление. Ресурс выделется задаче, обратившейся к супервизору с запросом, если он свободен и в системе нет запросов от задач более высокого приоритета к этому же ресурсу; Текущий запрос и ранее выданные запросы допускают совместное использование ресурсов; Ресурс используемый задачей низшего приоритета может быть временно отобран (разделяемый ресурс).

Получив запрос, операционная система либо удовлетворяет его и дает управление задаче, выдавшей данный запрос, либо, если ресурс занят, ставит за­дачу в очередь к ресурсу. После окончания работы с ресурсом задача специальным вы­зовомдля супервизора сообщает операционной системе об отказе от ресурса.Операционная система может забирать ресурс сама, по требованию от супервизорадля выполнения какой-либо системной функции.

6.2Виртуальная память.Основная память компьютера ограничена, и если бы ОС располагала лишь ей, то это бы ограничело возможности функциональных приложений. Идея виртуальной памяти заключается в том, чтобы распологать данные на внешнем носителе и иметь адресное пространство с указанием, где лежитиформация о данных вовнешей памяти. Для этого занимаемая процессомпамять разбивается на несколько частей, назыкаемых страницами.Часть страниц находится в ОЗУ, другая часть должна быть на внешней пямяти. Для контроля наличия страницы во внешней памяти процессомвводится специальный бит присутствия, входящий в состав атрибутов страницы в таблице страниц. В тех случаях, когда страница, к которой обращается процесс, не находится в ОЗУ, нужно организовать ее подкачку с внешнего диска через структуру, называемую «виртуальная память». Виртуальная память находится на жестком диске. Она связана с процессоми имеет адреса нужной информации на внешнем носителе. Каждый процесс получет в своё распоряжение дополнительное адресное пространство.Виртуальная память является логическим представлением расположения информации в памятина внешнем носителе и не является хранилищем самих страниц. Блок управления памятью ( memorymanagementunit, MMU) — компонент аппаратного обеспечения компьютера, отвечающий за управление доступом к памяти, запрашиваемым центральным процессором. Его функции заключаются в трансляции адресов виртуальной памяти в адреса внешней физической памяти.Менеджер памяти откачивает часть данных на вторичное хранилище и указывает это в виртуальной памяти.

В результате процессы используют существенно меньше физической памятиОЗУ, чем им доступно через виртуальную.Как физическая так и виртуальная память делится на части фиксированного размера, называемые страницами (Page). Процессоры х86 делят физическое адресное пространство на страницы размером 5кВ, используя для этого устройство управления памятью MMU (MemoryManagementUnit). При выполнении процесса в физическую память загружаются лишь используемые страницы, остальные же хранятся во вторичной памяти.

Когда процесс обращается по виртуальному адресу, к данным хранящемися в массовой памяти, менеджер памяти загружает требуемую страницу в основную память. Приложения не должны учитывать откачку/подкачку страниц – этим с аппаратной поддержкой занимается менеджер памяти, и весь процесс незаметен для приложений. Для увеличения объема виртуальной памяти необходимо войти в систему с учетной записью «Администратор». Если компьютер подключен к сети, то параметры сетевой политики могут запретить выполнение данной процедуры.

Адресное пространство виртуальной памяти зависит от аппаратной платформы. Так, адресное пространство 32-битных х86 систем составляет 4ГБ. Операционные системы, работающие с этими платформами не могут видить большие объемы ОЗУ, хотя физически память установлена.

Физической памяти (ОЗУ) компьютера должно быть достаточно, чтобы в нее поместились все текущие страницы пользовательских программ. Если основной памяти не хватает, то производительность системы резко падает из-за ошибок страниц и, соответственно постоянного подкачивания страниц.

Ошибка страница (PageFault) – это ситуация, когда процесс обращается по логическому адресу, но соответствующая страница не загружена в основную память. Если возникает ошибка страницы, ОС запускает процедуру управления ошибка страниц, которая блокирует обратившийся по этому адресу процесс, находит во виртуальной вторичной памяти требуемую страницу и загружает её в основную память. Затем процедура управления ошибками обновляет запись страницы физическим адресом и запускает заблокированный процесс, чтобы тот мог возобновить свою работу.

Если в оперативной памяти недостаточно места для создания новой страницы, ОС применяет алгоритм замещения страниц, согласно которому в памяти отыскивается страница, которую в данный момент можно перенести во вторичную память. Выбор страницы для переноса во вторичную память является очень ответственным, поскольку, если будет выбрана страница, которая скоро потребуется, операционной системе скоро вновь придётся решать проблему ошибки страницы и переносить недавно удалённую страницу обратно в основную память. Может случиться, что в системе возникает большое число ошибок страниц, и ОС приходится непрерывно заниматься их подкачкой.

Процессы при этом простаивают в ожидании страниц. Такая ситуация называется пробуксовкой (Thrashing). Это патологическая ситуация, когда ОС тратит большую часть времени на разрешение ошибок страниц, а процессы не могут выполнять свои задачи. Для решения этой проблемы ОС должна сократить число запущенных процессов. Этого можно выполнить блокировкой поцесса и переносом его на жёсткий диск, высвободив при этом место в основной памяти.

Папиллярные узоры пальцев рук – маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

МГУ. Физиология растений. Лекции 4-5

Всем доброго времени суток, исключительно для популяризации науки, в соответствии со статьёй 1274 ГК РФ выкладываю лекции с портала openedu, т.к. не все умеют скачивать, а смотреть онлайн не всегда удобно.

Лекция 1. Что такое физиология растений. Растения и мы.

Лекция 2. Фотосинтез I. пигменты фотосинтеза.

Лекция 1 Части 1-5, Лекция 2 Части 1-2: http://my-files.ru/uvfbkq

Лекция 3. Фотосинтез II. Световая и темновая фаза фотосинтеза. С-3 – цикл.

Лекция 4. Фотосинтез III. С-4 и САМ как экологическая адаптация растений.

Читайте также:
Лекция 5.5

Лекция 5. Дыхание. Разнообразие окислительных путей у растений.

Лекция 6. Минеральное питание I. Метаболизм азота.

Лекция 7. Минеральное питание II. Поступление и транспорт ионов.

Лекция 8. Рост и развитие I. Гормональная система. Ауксины.

Лекция 9. Рост и развитие II. Цитокинины, гиббереллины, брассиностероиды.

Лекция 10. Рост и развитие III. Стрессовые гормоны растений.

Лекция 11. Фоторецепция и регулируемые светом процессы.

Лекция 12. Фотопериодизм.

Автор курса: Чуб Владимир Викторович – доктор биологических наук, профессор кафедры физиологии растений Биологического факультета МГУ, профессор специализированного учебно-научного центра им. А.Н. Колмогорова (СУНЦ МГУ)

Правила сообщества

Публиковать могут пользователи с любым рейтингом. Однако мы хотим, чтобы соблюдались следующие условия:

ДЛЯ АВТОРОВ:

Приветствуются:

-уважение к читателю и открытость

Не рекомендуются:

-публикация недостоверной информации

ДЛЯ ЧИТАТЕЛЕЙ:

Приветствуются:

-конструктивные дискуссии на тему постов

Не рекомендуются:

-личные оскорбления и провокации

-неподкрепленные фактами утверждения

В этом сообществе мы все союзники – мы все хотим учиться! :)

Уважаемый автор, извини за тупость, но как пользоваться этим материалом?

лучше бы тут как-то по одной выставляли. приятнее ,когда тут же заходишь и читаешь. а куда-то идти что-то скачивать. почему-то всегда хочется пройти мимо(

МОХ ДАЛ НАМ ЖИЗНЬ

Автор: создатель сообщества Фанерозой, научный-популяризатор, Александр Яскин.

Кислород появился на нашей планете 2,5 миллиарда лет назад. Но почему уровень содержания его в атмосфере (не в воде) начал увеличиваться? В научном сообществе есть множество гипотез, отвечающих на этот вопрос. Одни выдвигали гипотезу, что уровень кислорода начал увеличиваться в начале палеозойской эры, но конкретные причины не были обозначены. Другие предполагали, что уровень кислорода начал повышаться 380 миллионов лет назад из-за формирования первых лесов. Но в 2016 году группа учёных из Калифорнийского университета выдвинула гиоптезу, что причиной всему является мох [1].

Окаменелости спор и иные геологические данные позволили учёным создать компьютерную модель повышения уровня кислорода в атмосфере Земли. Данная модель показала, что первые растения колонизировавшие поверхность земли 475 миллионов лет назад, сыграли решающую роль в формировании кислорода. По данным ученых благодаря мху, 445 миллионов лет назад на нашей планете уровень кислорода вырос до 30% и начала формироваться почва, благоприятствующая развитию других видов растений.

Именно мох дал возможность нашим далёким предкам начать выходить на сушу и начать целую цепочку событий, развернувшихся на нашей планете позднее. Великое пермское вымирание, гибель динозавров, эволюция человека. Ничего этого не было бы без мха. Как заключает автор статьи: «Только подумайте, никого из нас не было бы тут сегодня, если бы не мох!»

Источники:

Двулистник Грея (Skeleton Flower) становится прозрачным во время дождя. Видео

Земля является домом для многих интересных видов цветов. Однако не всем из нас посчастливилось увидеть эти великолепные цветы, поскольку они обычно спрятаны далеко от цивилизации, вдали от любопытных человеческих рук.

Двулистник Грея (лат. Diphylleia grayi) является одним из таких растений, редких вид, растущий всего в трех частях света: Китае, Японии и Аппалачах, США. Короче говоря, их можно увидеть там, где климат более холодный, влажный и окружен горами. Вот небольшое видео, на котором цветок в процессе превращения из белого в прозрачный/стеклянный/хрустальный.

Научное объяснение того, почему белые лепестки превращаются в стекло во влажном состоянии, связано с их рыхлой клеточной структурой, а не с вымыванием пигментов. Когда идут дожди, вода заполняет клетки лепестков, становясь кристально чистой. Однако по мере того, как дождь утихает и лепестки высыхают, они возвращаются к своему первоначальному белому цвету.

Пни, которые должны быть мертвыми, могут поддерживаться соседними деревьями

Пень, который должен был погибнуть, поддерживается соседними деревьями, которые подают к нему воду и питательные вещества через взаимосвязанную корневую систему.

Себастьян Лойзингер из Оклендского технологического университета, Новая Зеландия, и его коллега, гуляя по лесной тропе к западу от Окленда, заметили единственный пень с растущей на нем живой тканью. Интересуясь тем, как он выживает без зеленой листвы, они решили установить несколько водяных мониторов непрерывного действия на пне каури ( Agathis australis ) и на двух соседних взрослых деревьях того же вида.

В течение следующих недель они обнаружили связь между потоком воды в деревьях и пне. Когда соседние деревья испаряли воду через листья в течение дня, движение воды в пне оставалось низким. Но когда деревья “спали” ночью, вода начинала циркулировать через пень.

Точно так же, когда стало пасмурно или дождливо, и поток воды падал на деревья, он поднимался в пне. У здоровых деревьев поток воды в значительной степени определяется испарением, но без листьев поток воды пня был ограничен движениями его соседей.

Наряду с растущим пониманием того, как грибы помогают деревьям обмениваться углеродом и другими питательными веществами, эта взаимосвязь подрывает представление о деревьях, как об отдельных объектах.

Лесники сообщали о живых пнях еще в 1800-х годах, но это одно из первых исследований того, как они выживают. Работа была опубликована в журнале iScience в 2019 году.

Зачем деревьям поддерживать пень?

Есть несколько причин, по которым соседние деревья могут поддерживать пень. Быть может пень и его корни придают живому дереву большую устойчивость в земле, или пень без листьев просто становится частью более широкой корневой системы дерева-хозяина. Лойзингер говорит, что водный канал между деревьями может сделать их более устойчивыми к нехватке воды, но это также может увеличить риск распространения болезней.

По словам Грега Мура из Мельбурнского университета, Австралия, деревья «безжалостно эффективны» в максимальном использовании своих ресурсов. «Таким образом, тот факт, что этот пень поддерживается ближайшими деревьями, говорит о том, что они получают выгоду», – говорит он.

Вымирание современной мегафауны может привести к вероятному вымиранию манго в тропиках

Автор: биолог Ефимов Самир, вдоховитель сообщества Фанерозой.

Ух, как сегодня было жарко под нашим постом про авокадо. Некоторые перегрелись до белочки настолько сильно, что увидели в нашем очерке плагиат баянистый, украденный у нашего друга — кота. Привиделось, понимаем. Ну, ребят, простите, что щитень не кот и плыл до Вас с этой ягодой аж целый год. Авокадо, кстати, не фрукт, а ягода ( маленькая ремарка).

Читайте также:
Лекция 1.3.2

Нет у щитня лапок пушистых, чтоб лодку смастерить скоростную, только свои ракоообразные адаптации, с помощью которых он и доплыл до Пикабу, и посадил своё авокадное дерево в болоте вкашных земель еще в 2020 году.

Проросло же, однако. Вот и Вас, ягодой спешил угостить. Извиняемся, что щитень опоздал, осталось- косточка. Однако актуалочка свежа до сих пор, раз люди спорят, что авокадо ленивец не нужен был, дескать, все равно прорастает и без него. Но щитень ожидаемо был готов к такому повороту событий. И вот Вам факты, а не вымысел разлетевшийся на подобную критику по нашим землям, откуда мы и приплыли сюда.

Собственно как и год назад так и сегодня здесь мы обсуждали такое интересное явление под названием эволюционные анахронизмы, с помощью которых наше щитнеобразная голова и постаралась объяснить причину того, почему у авокадо такая большая косточка.

Тем не менее не все люди согласны с этой позицией и выражают критику данной гипотезы рассказывая нам о том, что мегафауна не могла и не может повлиять на выживаемость растений. Дескать подобные плоды с большой косточкой спокойно разносятся и без мегафауны обычными представителями животного мира. От части они будут правы, но только в тех случаях, для которых доказано, что выживаемость семян не зависит/зависело в большей степени от мегафауны в виде вымерших мастодонтоподобных животных и нынешних тапиров, а также заменителей мегафауны в виде домашнего скота.

Так как большие семена многих растений вполне спокойно разносятся и без слонтяр и мамонтих с помощью крупных попугаев (например Ара) и разных макак, роль мегафауны с этой позиции остается весьма спорной и ставит под сомнение господствующее положение гипотезы эволюционных анахронизмов. Такими семенами могут быть крупные семена плодовых пальм произрастающих в Амазонии [1].

В тоже время последнее исследование прошлого года не опровергает роль эволюционных анахронизмов для некоторых растений нового света и для большинства растений старого света. В том же исследовании в списке невычеркнутых анахронизмов до сих пор есть и авокадо [4]. Суть в том, что подобные большие косточки повреждаются грызунами, или срыгиваются мелкими животинами возле источников произростания, что эволюционно невыгодно.

Т.е. с точки зрения зрения гипотез выдвинутых нашими подписчиками, подписчиками портала «антропогенез» и обитателями пикабу, единственное на что может повлиять мегафауна — это максимум только на распространение семян. Ошибка заключается в том, что они совершенно не берут во внимание тот факт, что выживаемость семян зависит во многом как раз таки от их распространения. Именно поэтому с этой точки зрения наши критики и ошибаются.

Сегодня я хочу рассмотреть вопрос о распространении семян растений, которые претендуют именно на роль эволюционного анахронизма [3]. Речь как вы поняли из названия пойдёт о растениях подобных манго, которые произрастают в лесах Восточной Азии и употребляются в пищу чаще всего носорогами, слонами и тапирами, где слоны и носороги являются главными представителями современной мегафауны, которые собственно и являются главными распространителями данных семян.

Исследование международной группой учёных под руководством профессора Ахимса Кампос-Арсейса заведующего лабораторией ботаники Научно-Исследовательского Института Биоразнообразия Юго-Восточной Азии Менгла показало, что исчезновение таких животных как слоны и носороги, которые разносят семена, таких растений как манго, ставит под угрозу структурную целостность и биоразнообразие тропических лесов Юго-Восточной Азии.

С помощью испанских исследователей эта международная группа экспертов подтвердила, что даже травоядные животные, такие как тапиры, не смогут стать естественным заменителем вымирающей мегафауны. Животные мегафауны действуют как «садовники» поддерживающие домашний сад в «9-ти сотках» зажиточного крестьянина. Эти животные очень важны в поддержании тропических лесов, поскольку, как бы это странно не звучало, они напрямую участвуют в восстановлении леса поедая его плоды.

В лесах Восточной Азии из-за большого разнообразия видов растений не хватает места для прорастания и роста всех деревьев. Помимо нехватки света и минеральных веществ для пропитания семян под родительским деревом, рассеивание семян осложняется отсутствием ветра, поскольку ветра не бывает там, где местами «сплошной стеной» стоят деревья высотой до 90 метров.

В таких условиях выживание растений ограничивается распространением семенами, которые распространяют животные, питающиеся мякотью плодов. Они либо разбрасывают их, например, когда роняют пищу, либо срыгивают их, либо испражняются ими позже. В таких случаях помёт этих животных служит питательной средой для развития и жизни растений.

К сожалению срыгивание целых крупных семян мелкими животными не всегда происходит удачно, а транспортировка этих семян не всегда происходит в дали от родительского дерева, возле которого выживаемость таких семян не всегда высокая.

Получается, что растениям с крупными семенами временами необходимо крупное животное, способное съедать семя без повреждений, транспортировать его и испражнить его в тех условиях, где это семя выживет несмотря на недостаток света [3;4].

Однако, стоит ещё раз подчеркнуть, что далеко не все растения с крупными семенами напрямую зависят от поедания их мегафауной. Тем не менее, в случае с манго, спасение семян зависит в большей степени от слонов и носорогов, потому что именно они могут разбрасывать помётом большое количество целых семян благодаря тому, что часто глотают семена полностью, а их пищеварительная система не способна быстро переваривать очень малое количество пищи, тем самым сохраняя семена растений целыми.

Однако уничтожение среды обитания, а также браконьерство ради добычи слоновой кости и рогов носорогов, привело к потере 95% исторического ареала распространения азиатских слонов (Elephas maximus) и почти полному истреблению носорогов вида Ява (Rhinoceros sondaicus) и суматринских носорогов (Dicerorhinus sumatrensis).

На момент этого исследования в лесах Восточной Азии насчитывалось менее 50-ти носорогов Ява и всего 200-ти суматринских носорогов. Согласно Красному списку Международного союза охраны природы (МСОП), слоны находятся в «опасности исчезновения», а два вида носорогов «находятся под угрозой исчезновения».

В связи с данным трагическим обстоятельством учёные оценили способность рассеивать семена другого крупного травоядного животного — тапира (Tapirus indicus)., который к своей половозрелости достигает веса примерно 300 кг. По культурным причинам на него не охотятся, и его пищеварительная система аналогична пищеварительной системе слонов и носорогов.

Читайте также:
Лекция 1.1

Исследование позволило исследователям проанализировать влияние дисперсии тапиров на выживаемость семян девяти различных растений. Сюда входят некоторые крупные виды растений, такие как манговое дерево и дуриан, а также другие более мелкие виды, такие как «слоновье яблоко» (Dillenia indica) и тамаринд.

Результаты исследования показали, что тапиры испражняли 8% проглоченных семян тамаринда (ни одно из которых не проросло) по сравнению со слонами, которые испражняли 75% из 2390 проглоченных семян (65% из которых проросли).

Результаты поедания более крупных семян вообще не показали их сохранности, поскольку при поедании тапиры плевались возле источника произрастания, жевали, переваривали полностью большинство крупных семян, или переваривали их частично. Получалось, что при поедании плодов семена либо уничтожались, либо не распространялись, а оставлялись на одном и том же месте возле родительского дерева.

Таким образом было выяснено, что тапиры не являются хорошими «садовниками» для растений с крупными плодами и семенами.

Получается, что, уничтожая современную мегафауну, человек кардинально меняет местную экосистему, которую невозможно будет восстановить полностью.

Мы можем сохранить лишь определённые виды растений, выращивая их так, как мы выращиваем гинкго или авокадо, но мы не сможем восстановить все утерянные виды растений. Поэтому если мы не хотим их потерять нам не стоит уничтожать как минимум всю современную мегафауну [4], обитающую в лесах, а для того чтобы её сохранить нужны очень жёсткие меры, но это уже совсем другая история.

Лекция 4.5

МОДУЛЬ 1 «Физические основы механики»

Неделя 1-2

Лекция 1. Введение.

Вводная. Предмет физики. Физический объект, физическое явление, физический закон. Физика и современное естествознание. Системы отсчёта. Кинематика материальной точки. Угловые скорость и ускорение твёрдого тела. Классический закон сложения скоростей и ускорений при поступательном движении подвижной системы отсчета.

Очное обучение: ОЛ-2: Введение. §1.1 – 1 .5; ОЛ-5: Введение. §1.1 – 1.3; ДЛ-12: §1 – 4, 7 – 9, ДЛ-14: §1 – 4

Дистанционное обучение: ОЛ-2: Введение. §1.1 – 1.5; ОЛ-5: Введение, §1.1 – 1.3; ДЛ-12: §1 – 4, 7 – 9; ДЛ-14: §1 – 4, МП-7: гл.1

Лекция 2 . Закон сохранения импульса.

Силы. Инерциальная система отсчета. Динамика материальной точки. Механическая система и ее центр масс. Уравнение изменения импульса механической системы. Закон сохранения импульса.

Очное обучение: ОЛ-2: §2.1 – 2.6, 2.8 – 2.11, 3.1 – 3.10; ОЛ-5: § 2.1 – 2.5, 3.1 – 3.4; ДЛ-12: § 18, 19, 21, 23; ДЛ-14: § 9 – 13, 18, 19

Дистанционное обучение: ОЛ-2: §2.1 – 2.6, 2.8 – 2.11, 3.1 – 3.10; ОЛ-5: §2.1 – 2.5, 3.1 – 3.4; ДЛ-12: §18, 19, 21, 23; ДЛ-14: §9 – 13, 18, 19; МП-7: гл.2.

Семинар 1. Кинематика.

Очное обучение: Ауд.: ОЛ-8: 1.15, 1.25, 1.41, 1.45, 1.52 или ОЛ-9: 1.15, 1.26, 1.41, 1.45, 1.52

Дома: ОЛ-8: 1.20, 1.47 или ОЛ-9: 1.20, 1.46; + ОЛ-10: 1.26, 1.54

Дистанционное обучение: ОЛ-8: 1.15, 1.20, 1.25, 1.41, 1.45, 1.47, 1.52 или ОЛ-9: 1.15, 1.20, 1.26, 1.41, 1.45, 1.46, 1.52; + ОЛ-10: 1.26, 1.54, МП-5 гл.1

Занятие 1 . Входное тестирование, вводная беседа и начало выполнения лабораторной работы №1 (М-1).

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 3. Закон сохранения момента импульса.

Момент силы. Моменты импульса материальной точки и механической системы. Уравнение моментов механической системы. Закон сохранения момента импульса механической системы.

Очное обучение: ОЛ-2: § 3.12, 5.1 – 5.4; ОЛ-5: §5.1 – 5.4; ДЛ-12: § 21, 24, 31, 32; ДЛ-14: § 30, 32, 33 – 36

Дистанционное обучение: ОЛ-2: §3.12, 5.1 – 5.4; ОЛ-5: §5.1 – 5.4; ДЛ-12: §21, 24, 31, 32; ДЛ-14: §30, 32, 33 – 36; МП-7: гл. 2.

Лекция 4 . Закон сохранения энергии в механике.

Работа и кинетическая энергия. Консервативные силы. Работа в потенциальном поле. Потенциальные энергии тяготения и упругих деформаций. Связь между потенциальной энергией и силой. Закон сохранения энергии.

Очное обучение: ОЛ-2: §3.2 – 3.8, 5.6 – 5.8; ОЛ-5: §4.1 – 4.6; ДЛ-12: §25, 33; ДЛ-14: §22–29

Дистанционное обучение: ОЛ-2: §3.2 – 3.8, 5.6 – 5.8; ОЛ-5: §4.1 – 4.6; ДЛ-12: §25, 33; ДЛ-14: §22 – 29; МП-7: гл. 3

Семинар 2. Закон сохранения импульса.

Очное обучение: Ауд.: ОЛ-8: 1.88, 1.108, 1.125, 1.144 или ОЛ-9: 1.85, 1.103, 1.120, 1.138

Дома: ОЛ-8: 1.87, 1.117 или ОЛ-9: 1.84, 1.112; + ОЛ-10: 2.34, 2.39

Дистанционное обучение: ОЛ-8: 1.87, 1.88, 1.108, 1.117, 1.125, 1.144 или ОЛ-9: 1.84, 1.85, 1.103, 1.112, 1.120, 1.138; + ОЛ-10: 2.34, 2.39, МП-5 гл.2

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 5 – 6. Колебания.

Гармонические колебания. Векторная диаграмма. Сложение гармонических колебаний одного направления равных и близких частот. Сложение взаимно перпендикулярных гармонических колебаний равных и кратных частот. Свободные незатухающие колебания. Энергия и импульс гармонического осциллятора. Фазовая траектория. Физический маятник. Квазиупругая сила. Свободные затухающие колебания. Декремент и логарифмический декремент колебаний. Вынужденные колебания. Установившиеся вынужденные колебания. Механический резонанс

Очное обучение: ОЛ-2: §8.1, 8.4 – 8.9, 8.11; ОЛ-5: §6.1 – 6.4; ДЛ-12: §50 – 54; ДЛ-14: §39 – 41, 81, 82, 85

Дистанционное обучение: ОЛ-2: §8.1, 8.4 – 8.9, 8.11; ОЛ-5: §6.1 – 6.4; ДЛ-12: §50 – 54; ДЛ-14: §39 – 41,81,82,85; МП-7: гл. 4.

Семинар 3 . Закон сохранения момента импульса.

Очное обучение: Ауд.: ОЛ-8: 1.228, 1.292, 1.310(а), 1.324 (а) или ОЛ-9: 1.207, 1.266, 1.282(а), 1.292(а)

Дома: ОЛ-8: 1.229, 1.287 (а) или ОЛ-9:1.208, 1.263 (а); + ОЛ-10: 3.25, 3.29.

Дистанционное обучение: ОЛ-8: 1.228, 1.229, 1.287(а), 1.292, 1.310(а), 1.324 (а) или ОЛ-9: 1.207, 1.208, 1.263(а), 1.266, 1.282(а), 1.292(а); + ОЛ-10: 3.25, 3.29, МП-5 гл.3

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 7. Механические волны.

Виды механических волн. Упругие волны в стержнях. Волновое уравнение. Плоская гармоническая волна, длина волны, фазовая скорость. Сферические волны. Объёмная плотность энергии волны. Вектор Умова-вектор плотности потока энергии. Когерентные волны. Интерференция волн. Стоячая волна.

Очное обучение: ОЛ-4: §1.1 – 1.7; ОЛ-6: §1.1 – 1.5; ДЛ-14: §81, 82, 85, МП-7; МП-8

Дистанционное обучение: ОЛ-4: §1.1 – 1.7; ОЛ-6: §1.1 – 1.5; ДЛ-14: §81, 82, 85; МП-8; МП-7: гл. 5.

Читайте также:
Лекция 2.1

Лекция 8 . Элементы релятивистской механики.

Преобразования Галилея. Инвариантность уравнений механики относительно преобразований Галилея. Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца. Кинематические следствия из преобразований Лоренца. Релятивистский закон сложения скоростей. Интервал событий. Элементы релятивистской динамики. Взаимосвязь массы и энергии. Связь между импульсом и энергией релятивистской частицы. Основное уравнение релятивистской динамики.

Очное обучение: ОЛ-2: § 6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20

Дистанционное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20; МП-7: гл. 6.

Семинар 4 . Закон сохранения энергии в механике.

Очное обучение: Ауд.: ОЛ-8: 1.158, 1.180, 1.194, 1.211, 1.310(б) или ОЛ-9: 1.148, 1.164, 1.176, 1.191, 1.282(б), 1.292(б)

Дома: ОЛ-8: 1.149, 1.169 или ОЛ-9: 1.142, 1.157; + ОЛ-10: 2.76, 2.87

Дистанционное обучение: ОЛ-8: 1.149, 1.158, 1.169, 1.180, 1.194, 1.211, 1.310(б) или ОЛ-9: 1.142, 1.148, 1.157, 1.164, 1.176, 1.191, 1.282(б), 1.292(б); + ОЛ-10: 2.76, 2.87, МП-5 гл.4

Очное и дистанционное обучение: ОЛ-1, ОЛ-2, ОЛ-4, ОЛ-6

Лекция 9. Элементы релятивистской механики.

Преобразования Галилея. Инвариантность уравнений механики относительно преобразований Галилея. Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца. Кинематические следствия из преобразований Лоренца. Релятивистский закон сложения скоростей. Интервал событий. Элементы релятивистской динамики. Взаимосвязь массы и энергии. Связь между импульсом и энергией релятивистской частицы. Основное уравнение релятивистской динамики.

Очное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20

Дистанционное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20; МП-7: гл. 6.

Статистический и термодинамический методы описания макроскопических тел. Термодинамическая система. Термодинамические состояния, обратимые и необратимые термодинамические процессы. Внутренняя энергия и температура термодинамической системы. Теплота и работа. Адиабатически изолированная система. Первое начало термодинамики.

Очное обучение: ОЛ-1: Введение. §1.1 – 1.5; ОЛ-3: §1.1 – 1.7; ДЛ-13: §1, 14, 16; ДЛ-15: §13, 41, 29

Дистанционное обучение: ОЛ-1: Введение, §1.1 – 1.5; ОЛ-3: §1.1 – 1.7; ОЛ-7: §1.1 – 1.2; ДЛ-13: §1, 14, 16; ДЛ-15: §13, 41, 29; МП-6.

Семинар 5 . Колебания и волны.

Очное обучение: Ауд.: ОЛ-8: 3.27, 3.64, 3.85, 3.186 или ОЛ-9: 4.25, 4.57, 4.79, 4.177

Дома: ОЛ-8: 3.12, 3.180 или ОЛ-9: 4.12, 4.176; + ОЛ-10: 6.45, 7.4

Дистанционное обучение: ОЛ-8: 3.12, 3.27, 3.64, 3.85, 3.180, 3.186 или ОЛ-9: 4.12, 4.25, 4.57, 4.79, 4.176, 4.177; + ОЛ-10: 6.45, 7.4, МП-5 гл.5, 6

МОДУЛЬ 2 «Молекулярная физика и термодинамика»

Лекция 11.

Уравнения состояния термодинамических систем. Уравнение Клапейрона-Менделеева. Идеально-газовый термометр. Основное уравнение молекулярно-кинетической теории. Равномерное распределение энергии по степеням свободы молекул. Внутренняя энергия идеального газа. Эффективный диаметр и средняя длина свободного пробега молекул газа. Экспериментальные подтверждения молекулярно-кинетической теории.

Очное обучение: ОЛ-1: §2.1 – 2.3; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ДЛ-13: §8, 10, 11; ДЛ-15: §7, 8, 14, 86, 87

Дистанционное обучение: ОЛ-1: §2.1 – 2.3; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ОЛ-7: §1.5, 1.6, 2.3; ДЛ-13: §8, 10, 11; ДЛ-15: §7, 8, 14, 86, 87; МП-6

Теплоемкость идеального газа при изопроцессах. Адиабатический процесс, уравнение Пуассона. Политропический процесс. Теплоемкость и работа в политропических процессах. Газ Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса.

Очное обучение: ОЛ-1: §2.4 – 2.7; ОЛ-3: §1.9 – 1.13; ОЛ-7: §1.3, 1.4, 1.7; ДЛ-13: §10, 17, 18, 32; ДЛ-15: §18, 21, 98, 103

Дистанционное обучение: ОЛ-1: §2.4 – 2.7; ОЛ-3: §1.9 – 1.13; ОЛ-7: §1.3, 1.4, 1.7; ДЛ-13: §10, 17, 18, 32; ДЛ-15: §18, 21, 98, 103; МП-6

Семинар 6. Теория относительности.

Очное обучение: Ауд.: ОЛ-8: 1.398, 1.415, 1.428, 1.443 или ОЛ-9: 1.365, 1.382, 1.395, 1.409

Дома: ОЛ-8: 1.396, 1.417 или ОЛ-9: 1.363, 1.384; + ОЛ-10 № 5.9, 5.30

Дистанционное обучение: ОЛ-8: 1.396, 1.398, 1.415, 1.417, 1.428, 1.443 или ОЛ-9: 1.363, 1.365, 1.382, 1.384, 1.395, 1.409; ОЛ-10 № 5.9, 5.30, МП-5 гл.7

Очное и дистанционное обучение: ОЛ-1, ОЛ-3, ОЛ-7

Лекция 13.

Тепловые и холодильные машины. Второе начало термодинамики. Цикл Карно. Теорема Карно. Термодинамическая шкала температур. Неравенство Клаузиуса. Термодинамическая энтропия. Закон возрастания энтропии. Третье начало термодинамики.

Очное обучение: ОЛ-1: § 3.1, 3.2, 3.4 – 3.10; ОЛ-3: § 2.11, 3.1 – 3.5; ОЛ-7: § 3.1 – 3.5; ДЛ-13: §19–22; ДЛ-15: §27 – 31, 37, 40, 41

Дистанционное обучение: ОЛ-1: § 3.1, 3.2, 3.4 – 3.10; ОЛ-3: § 2.11, 3.1 – 3.5; ОЛ-7: § 3.1 – 3.5; ДЛ-13: §19–22; ДЛ-15: §27 – 31, 37, 40, 41; МП-6

Основное неравенство и основное уравнение термодинамики. Понятие о термодинамических потенциалах. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна. Введение в термодинамику необратимых процессов.

Очное обучение: ОЛ-1: §4.1 – 4.5; ОЛ-3: §3.6; ОЛ-7: §3.5, 3.6; ДЛ-13: §23, 33, 57; ДЛ-15: §29, 45, 46

Дистанционное обучение: ОЛ-1: §4.1 – 4.5; ОЛ-3: §3.6; ОЛ-7: §3.5, 3.6; ДЛ-13: §23, 33, 57; ДЛ-15: §29, 45, 46

Семинар 7 . Термодинамика.

Очное обучение: Ауд.: ОЛ-8: 6.3, 6.30, 6.47, 6.154 или ОЛ-9: 2.3, 2.30, 2.47, 2.138

Дома: ОЛ-8: 6.32, 6.137 или ОЛ-9: 2.32, 2.122; + ОЛ-10: 11.6, 11.61

Дистанционное обучение: ОЛ-8: 6.3, 6.30, 6.32, 6.47, 6.137, 6.154 или ОЛ-9: 2.3, 2.30, 2.32, 2.47, 2.122, 2.138; + ОЛ-10: 11.6, 11.61, МП-6

Очное и дистанционное обучение: ОЛ-1, ОЛ-3, ОЛ-7

Лекция 15.

Статистическое описание равновесных состояний. Функция распределения. Барометрическая формула. Распределения Больцмана. Принцип детального равновесия. Распределение Максвелла. Экспериментальная проверка распределения Максвелла. Фазовое пространство. Распределение Максвелла-Больцмана. Равновесные флуктуации. Статистическое обоснование второго начала термодинамики. Формула Больцмана для статистической энтропии.

Очное обучение: ОЛ-1: §5.1 – 5.9; ОЛ-3: §1.14, 2.1, 2.6 – 2.8, 2.10; ОЛ-7: §2.1 – 2.4; ДЛ-13: §8 – 10; ДЛ-15: §72, 76, 77

Дистанционное обучение: ОЛ-1: §5.1 – 5.9; ОЛ-3: §1.14, 2.1, 2.6 – 2.8, 2.10; ОЛ-7: §2.1 – 2.4; ДЛ-13: §8 – 10; ДЛ-15: §72, 76, 77, МП-1

Термодинамические потоки. Явления переноса в газах: диффузия, теплопроводность и вязкость. Эффузия в разреженном газе. Физический вакуум. Броуновское движение. Производство энтропии в необратимых процессах.

Читайте также:
Лекция 2.6

Очное обучение: О Л-1: §91, 120 – 127; ОЛ-11: §97, 98, 100, 102, 104

Дистанционное обучение: ОЛ-1: §6.1 – 6.5; ОЛ-3: §7.1, 7.3 – 7.7; ОЛ-7: §6.2, 6.3; ДЛ-13: §50 – 52, 54; ДЛ-15: §86 – 89, 93, 95; МП-2

Семинар 8 . Равновесные статистические распределения.

Очное обучение: Ауд.: ОЛ-8: 6.84, 6.96, 6.124, 6.208 или ОЛ-9: 2.81, 2.95, 2.119, 2.252

Дома: ОЛ-8: 6.68, 6.192 или ОЛ-9: 2.68, 2.236; + ОЛ-10: 10.16, 10.60

Дистанционное обучение: ОЛ-8: 6.68, 6.84, 6.96, 6.124, 6.192, 6.208 или ОЛ-9: 2.68, 2.81, 2.95, 2.119, 2.236, 2.252; + ОЛ-10: 10.16, 10.60, МП-1

Лекция 17.

Основные представления о строении жидкостей. Поверхностное натяжение. Формула Лапласа. Смачивание жидкостями поверхностей твердых тел. Капиллярные явления.

Очное обучение: ОЛ-1: §6.1 – 6.5; ОЛ-3: § 7.1, 7.3 – 7.7; ОЛ-7: §5.1 – 5.4; ДЛ-13: §34, 35, 41; ДЛ-15: §111, 112, 116, 120

Дистанционное обучение: ОЛ-1: §7.1 – 7.7; ОЛ-3: §5.1 – 5.5, 6.1-6.5; ОЛ-7: §5.1 – 5.4; ДЛ-13: §34, 35, 41; ДЛ-15: §111, 112, 116, 120

Лекция 18. Обзорная лекция.

Примечание: часть указанного в плане теоретического материала лектор по согласованию с методической комиссией кафедры дает студентам для самостоятельного изучения.

Моделирование сети с топологией звезда на базе коммутатора

Сначала немного теории. Hub работает на 1м уровне модели OSI и отправляет информацию во все порты, кроме порта – источника. Switch работает на 2м уровне OSI и отправляет информацию только в порт назначения за счет использования таблицы MAC адресов хостов. В сетях IP существует 3 основных способа передачи данных: Unicast , Broadcast , Multicast.

  • Unicast (юникаст) – процесс отправки пакета от одного хоста к другому хосту.
  • Multicast (мультикаст) – процесс отправки пакета от одного хоста к некоторой ограниченной группе хостов.
  • Broadcast (бродкаст) – процесс отправки пакета от одного хоста ко всем хостам в сети.

В некотовых случаях switch может отправлять фреймы как hub , например, если фрейм бродкастовый ( broadcast – широковещание ) или unknown unicast (неизвестному единственному адресату).

Практическая работа 4-1. Моделирование сети с топологией звезда на базе коммутатора

Работу сети с топологией звезда на базе концентратора мы уже изучили. Теперь рассмотрим аналогичную сеть на базе коммутатора ( рис. 4.1).

Пример сети с топологией звезда на базе коммутатора ( файл task-4-1.pkt) прилагается.

На вкладке Physical вы можете посмотреть вид коммутатора, имеющего 24 порта Fast Ethernet и 2 порта Gigabit Ethernet ( рис. 4.2).

В режиме Simulation настроим фильтры и с помощью функции просмотрим прохождение пакета между двумя ПК через коммутатор . Как видим, маршруты пакетав концентраторе и коммутаторе будут разными: как в прямом, так и в обратном направлении хаб отправляет всем, а коммутатор – только одному.

Задание 4.1

Произведите проектирование локальной сети из хаба, коммутатора и 4х ПК

Сеть , которую необходимо спроектировать представлена на рис. 4.3.

Произведите настройку и диагностику этой сети двумя способами (утилитой ping и в окне списка PDU . Убедитесь в успешности работы сети в режиме симуляции.

Перед выполнением симуляции необходимо задать фильтрацию пакетов. Для этого нужно нажать на кнопку “Изменить фильтры”, откроется окно, в котором нужно оставить только протоколы “ICMP” и “ARP”. Кнопка “Авто захват/Воспроизведение” подразумевает моделирование всего ping-процесса в едином процессе, тогда как “Захват/Вперед” позволяет отображать его пошагово.

Практическая работа 4-2. Исследование качества передачи трафика по сети

При исследовании пропускной способности ЛВС (качества передачи трафика по сети) желательно увеличить размер пакета и отправлять запросы с коротким интервалом времени, не ожидая ответа от удаленного узла, для того, чтобы создать серьезную нагрузку на сеть . Однако, утилита ping не позволяет отправлять эхо- запрос без получения эхо-ответа на предыдущий запрос и до истечения времени ожидания. Поэтому для организации существенного трафика воспользуемся программой Traffic Generator . Для работы создайте и настройте следующую сеть ( рис. 4.4).

Первое знакомство с Traffic Generator

В окне управления PC1 во вкладке Desktop выберите приложение Traffic Generator и задайте настройки, как на рис. 4.5 для передачи трафика от PC1 на PC8. Для ясности я рядом с английской версией окна разместил тот же текст в русской версии программы CPT.

Итак, при помощи протокола ICMP мы сформировали трафик между компьютерами PC1 с адресом 192.168.0.1 и PC8 с адресом 192.168.0.8. При этом в разделе Source Settings (Настройки источника) необходимо установить флажок Auto Select Port (Автовыбор порта), а в разделе PDU Settings (настройки IP -пакета) задать следующие значения параметров этого поля:

Select application: PING

Destination: IPAddress: 192.168.0.8 (адресполучателя);

Source IP Address: 192.168.0.1 ( адрес отправителя);

TTL:32 (время жизни пакета);

TOS: 0 (тип обслуживания, “0” – обычный, без приоритета);

Sequence Number: 1 (начальное значение счетчика пакетов);

Size: 1400 (размер поля данных пакета в байтах);

Simulations Settings – здесь необходимо активировать переключатель ;

Periodic Interval: 0.3 Seconds (период повторения пакетов)

Не обязательно использовать те настройки, которые задал автор. Можете указать свои, например, Size: 1500, PeriodicInterval: 0.5 Seconds. Однако, если неверно укажете IP источника, то генератор работать не будет.

После нажатия на кнопку Send (Послать) между PC1 и PC8 начнется активный обмен данными . Не закрывайте окно генератора трафика настройки, чтобы не прервать поток трафика – лампочки должны постоянно мигать!

TTL – время жизни пакета. Наличие этого параметра не позволяет пакету бесконечно ходить по сети. TTL уменьшается на единицу на каждом узле (хопе), через который проходит пакет.

Пример сети для исследования качества передачи трафика по сети ( файл task-4-2.pkt) прилагается.

Исследование качества работы сети

Для оценки качества работы сети передадим поток пакетов между РС1 и РС8 при помощи команды ping –n 200 192.168.0.8и будем оценивать качество работы сети по числу потерянных пакетов. Параметр “–n” позволяет задать количество передаваемых эхо-запросов (у нас их 200) – рис. 4.6.

Одновременно с пингом, нагрузите сеть , включив генератор трафика на компьютере РС2 (узел назначения – РС8, размер поля данных–2500 байт , период повторения передачи – 0,1 сек. – рис. 4.7.

Для оценки качества работы сети – зафиксируйте число потерянных пакетов ( рис. 4.8).

Читайте также:
Лекция 3.2

Как вариант можно было бы загрузить сеть путем организации еще одного потока трафика между какими-либо узлами сети, например, включив генератор трафика еще на ноутбуке PC3.

В заключение этой части нашей работы остановите Traffic Generator на всех узлах, нажав кнопку Stop.

Повышение пропускной способности локальной вычислительной сети

Проверим тот факт, что установка коммутаторов вместо хабов устраняет возможность возникновения коллизий между пакетами пользователей сети. Замените центральный концентратор на коммутатор ( рис. 4.9). Немного подождите и убедитесь, что сеть находится в рабочем состоянии – все маркеры портов не красные, а зеленые.

Снова задайте поток пакетов между РС1 и РС8 при помощи команды ping –n 200 192.168.0.8и включите Traffic Generator на РС2. Проследите работу нового варианта сети. Убедитесь, что за счет снижения паразитного трафика качество работы сети стало выше (

Задание 2

Проверьте самостоятельно, что замена не одного, а всех хабов коммутаторами существенно улучшит качество передачи трафика в сети. Пример такой сети для исследования качества передачи трафика по сети ( файл task-4-3.pkt) прилагается.

Геоурбанистика

лекция № 4

4.1. Динамика городского населения

4.2. Пространственные закономерности урбанизации

  1. Территориальная концентрация разнообразных видов деятельности в городах и ареалах преимущественного развития.
  1. Выборочность в пространстве разнообразных форм урбанизированного расселения, фокусирование населения в наиболее выгодных точках и ареалах социально-экономического развития.
  • относительно равномерное расселение с опережающим ростом сельского населения, города только появляются;
  • ускоренное развитие «точечных» городских форм, сопровождаемое спадом в динамике сельского расселения;
  • развитие агломерационных форм расселения при ускоренном росте их ядер, уменьшение сельского населения;
  • территориальное расширение агломерационных форм при ускоренном росте их периферийных зон, общее замедление роста городов при потере населения малыми городами;
  • деконцентрация населения с частичным заполнением межагломерационных пространств и стагнацией исторических ядер городов.

4.3. Основные этапы урбанизации в России

  • усилившейся концентрацией населения в крупных и крупнейших городах;
  • быстрым развитием городских агломераций;
  • формированием систем расселения;
  • повышением роли крупных, и особенно крупнейших, городов во всех сферах социально-экономической жизни общества;
  • распространением городского образа жизни на сельскую местность.

4.4. Особенности советской урбанизации

2 комментария:

Этот комментарий был удален автором.

Гамзатов Гамзат:В Российской империи к началу XX в. в центральном ареале было сконцентрировано 20 % городского населения страны, тогда как в Сибири и на Дальнем Востоке городское население не превышало 3 % с городами-стотысячниками Новосибирском, Иркутском и Владивостоком; научную базу огромного региона составлял Томский университет. Расселение в сельской местности, где проживало 82 % населения страны, характеризовалось крайней раздробленностью, перенаселением одних районов и принудительной военно-земледельческой колонизацией других (в основном национальных окраин). На Севере, в Казахстане и Средней Азии население вело кочевой образ жизни. В сельских поселениях полностью отсутствовало социально-культурное обслуживание, благоустроенные дороги. В итоге между большими городами, сосредоточившими почти весь потенциал культуры, и сельской местностью была огромная социальная и пространственная дистанция. В 1920 г. число грамотных составляло 44 % населения страны, в том числе женщин 32 %, среди сельского населения — соответственно 37 и 25 %.

Поселенческую основу страны к началу 1926 г. составляли 1925 городских поселений, в которых проживало 26 млн человек, или 18 % населения страны, и около 860 тыс. сельских поселений. Каркас центров расселения и культурного развития был представлен лишь 30 городами, из числа которых миллионниками были Москва и Ленинград.

Процесс урбанизации в СССР был связан с быстрой концентрацией производства в крупных городах, созданием новых многочисленных городов в районах нового освоения и соответственно с перемещением огромных масс населения из деревни в город и высокой его концентрацией в крупных и крупнейших городских поселениях.

Для этого этапа урбанизации были характерны следующие негативные черты, обусловленные тем, что расселение и организация общества происходили преимущественно на основе отраслевых экономических критериев: экстенсивный рост крупных городов, недостаточное развитие малых и средних городов; невнимание и недооценка роли сельских поселений как социальной среды; медленное преодоление социально-территориальных различий.

В современной России процесс урбанизации также связан с серьезными противоречиями. Тенденция к имущественной поляризации населения внутри городских сообществ приводит к сегрегации бедного населения, вытеснению его на «обочину» городской жизни. Экономический кризис и политическая нестабильность стимулируют безработицу и внутреннюю миграцию, вследствие чего из-за чрезмерного притока населения во многих городах живет значительно больше населения, чем они в состоянии «переварить». Рост населения в городах, значительно опережая спрос на рабочую силу, сопровождается не только абсолютным, но подчас и относительным расширением тех слоев, которые не участвуют в современном производстве. Эти процессы приводят к росту городской безработицы и развитию в городах неорганизованного сектора экономики, занятого мелким производством и обслуживанием. Кроме того, заметен рост криминального сектора, включающего и «теневую» экономику, и организованную преступность.

Как бы то ни было, городская жизнь и городская культура стали органичной средой социального обитания. В начале XXI в. большинство россиян составляют коренные горожане. Они будут задавать тон в развитии общества, и от того, как сейчас сформируются системы социального управления, как изменится социальная среда, будет зависеть жизнь новых поколений.

Этапы информатизации образования

Ретроспективный анализ процесса внедрения и использования средств вычислительной техники и компьютерных технологий в учебном процессе позволил выделить три этапа информатизации образования (условно названные электронизацией, компьютеризацией и информатизацией образовательного процесса) [ 4 ].

Первый этап информатизации образования (электронизация) характеризовался широким внедрением электронных средств и вычислительной техники в процесс подготовки студентов сначала технических специальностей (конец 50-х – начало 60-х годов), а затем гуманитарных специальностей (конец 60-х – начало 70-х годов) и предполагал обучение основам алгоритмизации и программирования, элементам алгебры логики, математического моделирования на ЭВМ.

Подобный подход предусматривал формирование у студентов алгоритмического стиля мышления, овладение некоторыми языками программирования, освоение умений работы на ЭВМ с помощью вычислительно-логических алгоритмов. Относительно малая производительность компьютеров того времени, отсутствие удобных в работе, интуитивно понятных для обычного пользователя (не программиста) и имеющих дружественный интерфейс программных средств не способствовали широкому использованию вычислительной техники в сфере гуманитарного образования.

Второй этап информатизации образования (компьютеризация) (с середины 70-х годов по 90-е годы) связан с появлением более мощных компьютеров, программного обеспечения, имеющего дружественный интерфейс, и характеризуется в первую очередь использованием диалогового взаимодействия человека с компьютером. Студенты как субъекты образовательного процесса впервые получили возможность, работая на компьютере, взаимодействовать с моделями -“заместителями” реальных объектов и, что самое главное, управлять объектами изучения. Компьютерные образовательные технологии позволили на основе моделирования исследовать различные (химические, физические, социальные, педагогические и т.п.) процессы и явления. Компьютерная техника стала выступать в качестве мощного средства обучения в составе автоматизированных систем различной степени интеллектуальности. В сфере образования все больше стали использоваться автоматизированные системы обучения, контроля знаний и управления учебным процессом [ 4 , 8 ].

Читайте также:
Лекция 6.1.1

Третий, современный, этап информатизации образования характеризуется использованием мощных персональных компьютеров, быстродей ствующих накопителей большой емкости, новых информационных и телекоммуникационных технологий, мультимедиа-технологий и виртуальной реальности, а также философским осмыслением происходящего процесса информатизации и его социальных последствий [ 5 , 6 , 7 , 9 , 1 0 , 1 1 ].

Преимущества использования ИКТ в образовании перед традиционным обучением

Е.И. Машбиц к набору существенных преимуществ использования компьютера в обучении перед традиционными занятиями относит следующее:

1. информационные технологии значительно расширяют возможности предъявления учебной информации. Применение цвета, графики, звука, всех современных средств видеотехники позволяет воссоздавать реальную обстановку деятельности.

2. компьютер позволяет существенно повысить мотивацию студентов к обучению. Мотивация повышается за счет применения адекватного поощрения правильных решений задач.

3. ИКТ вовлекают учащихся в учебный процесс, способствуя наиболее широкому раскрытию их способностей, активизации умственной деятельности.

4. использование ИКТ в учебном процессе увеличивает возможности постановки учебных задач и управления процессом их решения. Компьютеры позволяют строить и анализировать модели различных предметов, ситуаций, явлений.

5. ИКТ позволяют качественно изменять контроль деятельности учащихся, обеспечивая при этом гибкость управления учебным процессом.

6. Компьютер способствует формированию у учащихся рефлексии. Обучающая программа дает возможность обучающимся наглядно представить результат своих действий, определить этап в решении задачи, на котором сделана ошибка, и исправить ее.

Основные направления использования ИКТ в учебном процессе

Попытаемся систематизировать, где и как целесообразно использовать информационные технологии в обучении, учитывая, что современные компьютеры позволяют интегрировать в рамках одной программы тексты, графику, звук, анимацию, видеоклипы, высококачественные фотоизображения, достаточно большие объемы полноэкранного видео, качество которого не уступает телевизионному:

1) при изложении нового материала — визуализация знаний (демонстрационно – энциклопедические программы; программа презентаций Power Point);

2) проведение виртуальных лабораторных работ с использованием обучающих программ типа “Физикон”, “Живая геометрия”;

3) закрепление изложенного материала (тренинг — разнообразные обучающие программы, лабораторные работы);

4) система контроля и проверки (тестирование с оцениванием, контролирующие программы);

5) самостоятельная работа учащихся (обучающие программы типа “Репетитор”, энциклопедии, развивающие программы);

6) при возможности отказа от классно-урочной системы: проведение интегрированных уроков по методу проектов, результатом которых будет создание Web-страниц, проведение телеконференций, использование современных Интернет-технологий;

7) тренировка конкретных способностей учащегося (внимание, память, мышление и т.д.).

Под программированным обучением понимается управляемое усвоение учебного материала с помощью обучающего устройства (ЭВМ, программированный учебник, кинотренажер и др.). Программированный учебный материал представляет собой серию сравнительно небольших порций учебной информации (кадров, файлов, шагов), подаваемых в определенной логической последовательности.

Работы Скиннера, Краудера и других педагогов-исследователей дали толчок развитию трех различных видов обучающих программ (ОП): линейных, разветвленные и адаптивных, с помощью которых и строится процесс программированного обучения в современной школе.

Линейная ОП — это обучающая программа, в которой весь учебный материал разбивается на последовательность смысловых единиц (“порций”), логически охватывающих весь предмет. Эти “порции” должны быть достаточно малы, чтобы учащийся делал как можно меньше ошибок. В конце каждой “порции” выполняются контрольные задания, однако порядок изучения “порций” не зависит от результатов выполнения этих заданий.

Разветвленная ОП отличается от линейной тем, что обучаемому в случае неправильного ответа при выполнении контрольных заданий может предоставляться дополнительная информация, которая позволит ему выполнить контрольное задание.

Построение адаптивной ОП основано на гипотезе, что некоторое количество ошибок необходимо для успешного обучения, т.е. если учащийся все делает без ошибок, то эффект обучения будет меньше. Количество допущенных ошибок используется следующим образом;

а) если процент ошибок падает ниже определенного уровня, то степень трудности обучения автоматически повышается;

6) при возрастании процента ошибок выше определенного уровня степень трудности автоматически понижается.

Важнейшие задачи информатизации образования

1) повышение качества подготовки специалистов на основе использования в учебном процессе современных информационных технологий;

2) применение активных методов обучения, повышение творческой и интеллектуальной составляющих учебной деятельности;

3) интеграция различных видов образовательной деятельности (учебной, исследовательской и т.д.);

4) адаптация информационных технологий обучения к индивидуальным особенностям обучаемого;

5) разработка новых информационных технологий обучения, способствующих активизации познавательной деятельности обучаемого и повышению мотивации на освоение средств и методов информатики для эффективного применения в профессиональной деятельности;

6) обеспечение непрерывности и преемственности в обучении;

7) разработка информационных технологий дистанционного обучения;

8) совершенствование программно-методического обеспечения учебного процесса;

9) внедрение информационных технологий обучения в процесс специальной профессиональной подготовки специалистов различного профиля.

Одной из важнейших задач информатизации образования является формирование информационной культуры специалиста, уровень сформированности которой определяется, во-первых, знаниями об информации, информационных процессах, моделях и технологиях; во-вторых, умениями и навыками применения средств и методов обработки и анализа информации в различных видах деятельности; в-третьих, умением использовать современные информационные технологии в профессиональной (образовательной) деятельности; в-четвертых, мировоззренческим видением окружающего мира как открытой информационной системы.

Тенденции развития информатизации образования

В настоящее время в развитии процесса информатизации образования проявляются следующие тенденции:

1) формирование системы непрерывного образования как универсальной формы деятельности, направленной на постоянное развитие личности в течение всей жизни;

2) создание единого информационного образовательного пространства;

3) активное внедрение новых средств и методов обучения, ориентированных на использование информационных технологий;

4) синтез средств и методов традиционного и компьютерного образования;

5) создание системы опережающего образования.

Изменяется также содержание деятельности преподавателя; преподаватель перестает быть просто “репродуктором” знаний, становится разработчиком новой технологии обучения, что, с одной стороны, повышает его творческую активность, а с другой – требует высокого уровня технологической и методической подготовленности. Появилось новое направление деятельности педагога – разработка информационных технологий обучения и программно-методических учебных комплексов.

В заключение следует отметить, что в информационном обществе, когда информация становится высшей ценностью, а информационная культура человека – определяющим фактором их профессиональной деятельности, изменяются и требования к системе образования, происходит существенное повышение статуса образования.

Читайте также:
Лекция 6.6

Лекция 4.5

МОДУЛЬ 1 «Физические основы механики»

Неделя 1-2

Лекция 1. Введение.

Вводная. Предмет физики. Физический объект, физическое явление, физический закон. Физика и современное естествознание. Системы отсчёта. Кинематика материальной точки. Угловые скорость и ускорение твёрдого тела. Классический закон сложения скоростей и ускорений при поступательном движении подвижной системы отсчета.

Очное обучение: ОЛ-2: Введение. §1.1 – 1 .5; ОЛ-5: Введение. §1.1 – 1.3; ДЛ-12: §1 – 4, 7 – 9, ДЛ-14: §1 – 4

Дистанционное обучение: ОЛ-2: Введение. §1.1 – 1.5; ОЛ-5: Введение, §1.1 – 1.3; ДЛ-12: §1 – 4, 7 – 9; ДЛ-14: §1 – 4, МП-7: гл.1

Лекция 2 . Закон сохранения импульса.

Силы. Инерциальная система отсчета. Динамика материальной точки. Механическая система и ее центр масс. Уравнение изменения импульса механической системы. Закон сохранения импульса.

Очное обучение: ОЛ-2: §2.1 – 2.6, 2.8 – 2.11, 3.1 – 3.10; ОЛ-5: § 2.1 – 2.5, 3.1 – 3.4; ДЛ-12: § 18, 19, 21, 23; ДЛ-14: § 9 – 13, 18, 19

Дистанционное обучение: ОЛ-2: §2.1 – 2.6, 2.8 – 2.11, 3.1 – 3.10; ОЛ-5: §2.1 – 2.5, 3.1 – 3.4; ДЛ-12: §18, 19, 21, 23; ДЛ-14: §9 – 13, 18, 19; МП-7: гл.2.

Семинар 1. Кинематика.

Очное обучение: Ауд.: ОЛ-8: 1.15, 1.25, 1.41, 1.45, 1.52 или ОЛ-9: 1.15, 1.26, 1.41, 1.45, 1.52

Дома: ОЛ-8: 1.20, 1.47 или ОЛ-9: 1.20, 1.46; + ОЛ-10: 1.26, 1.54

Дистанционное обучение: ОЛ-8: 1.15, 1.20, 1.25, 1.41, 1.45, 1.47, 1.52 или ОЛ-9: 1.15, 1.20, 1.26, 1.41, 1.45, 1.46, 1.52; + ОЛ-10: 1.26, 1.54, МП-5 гл.1

Занятие 1 . Входное тестирование, вводная беседа и начало выполнения лабораторной работы №1 (М-1).

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 3. Закон сохранения момента импульса.

Момент силы. Моменты импульса материальной точки и механической системы. Уравнение моментов механической системы. Закон сохранения момента импульса механической системы.

Очное обучение: ОЛ-2: § 3.12, 5.1 – 5.4; ОЛ-5: §5.1 – 5.4; ДЛ-12: § 21, 24, 31, 32; ДЛ-14: § 30, 32, 33 – 36

Дистанционное обучение: ОЛ-2: §3.12, 5.1 – 5.4; ОЛ-5: §5.1 – 5.4; ДЛ-12: §21, 24, 31, 32; ДЛ-14: §30, 32, 33 – 36; МП-7: гл. 2.

Лекция 4 . Закон сохранения энергии в механике.

Работа и кинетическая энергия. Консервативные силы. Работа в потенциальном поле. Потенциальные энергии тяготения и упругих деформаций. Связь между потенциальной энергией и силой. Закон сохранения энергии.

Очное обучение: ОЛ-2: §3.2 – 3.8, 5.6 – 5.8; ОЛ-5: §4.1 – 4.6; ДЛ-12: §25, 33; ДЛ-14: §22–29

Дистанционное обучение: ОЛ-2: §3.2 – 3.8, 5.6 – 5.8; ОЛ-5: §4.1 – 4.6; ДЛ-12: §25, 33; ДЛ-14: §22 – 29; МП-7: гл. 3

Семинар 2. Закон сохранения импульса.

Очное обучение: Ауд.: ОЛ-8: 1.88, 1.108, 1.125, 1.144 или ОЛ-9: 1.85, 1.103, 1.120, 1.138

Дома: ОЛ-8: 1.87, 1.117 или ОЛ-9: 1.84, 1.112; + ОЛ-10: 2.34, 2.39

Дистанционное обучение: ОЛ-8: 1.87, 1.88, 1.108, 1.117, 1.125, 1.144 или ОЛ-9: 1.84, 1.85, 1.103, 1.112, 1.120, 1.138; + ОЛ-10: 2.34, 2.39, МП-5 гл.2

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 5 – 6. Колебания.

Гармонические колебания. Векторная диаграмма. Сложение гармонических колебаний одного направления равных и близких частот. Сложение взаимно перпендикулярных гармонических колебаний равных и кратных частот. Свободные незатухающие колебания. Энергия и импульс гармонического осциллятора. Фазовая траектория. Физический маятник. Квазиупругая сила. Свободные затухающие колебания. Декремент и логарифмический декремент колебаний. Вынужденные колебания. Установившиеся вынужденные колебания. Механический резонанс

Очное обучение: ОЛ-2: §8.1, 8.4 – 8.9, 8.11; ОЛ-5: §6.1 – 6.4; ДЛ-12: §50 – 54; ДЛ-14: §39 – 41, 81, 82, 85

Дистанционное обучение: ОЛ-2: §8.1, 8.4 – 8.9, 8.11; ОЛ-5: §6.1 – 6.4; ДЛ-12: §50 – 54; ДЛ-14: §39 – 41,81,82,85; МП-7: гл. 4.

Семинар 3 . Закон сохранения момента импульса.

Очное обучение: Ауд.: ОЛ-8: 1.228, 1.292, 1.310(а), 1.324 (а) или ОЛ-9: 1.207, 1.266, 1.282(а), 1.292(а)

Дома: ОЛ-8: 1.229, 1.287 (а) или ОЛ-9:1.208, 1.263 (а); + ОЛ-10: 3.25, 3.29.

Дистанционное обучение: ОЛ-8: 1.228, 1.229, 1.287(а), 1.292, 1.310(а), 1.324 (а) или ОЛ-9: 1.207, 1.208, 1.263(а), 1.266, 1.282(а), 1.292(а); + ОЛ-10: 3.25, 3.29, МП-5 гл.3

Очное и дистанционное обучение: ОЛ-2, ОЛ-5

Лекция 7. Механические волны.

Виды механических волн. Упругие волны в стержнях. Волновое уравнение. Плоская гармоническая волна, длина волны, фазовая скорость. Сферические волны. Объёмная плотность энергии волны. Вектор Умова-вектор плотности потока энергии. Когерентные волны. Интерференция волн. Стоячая волна.

Очное обучение: ОЛ-4: §1.1 – 1.7; ОЛ-6: §1.1 – 1.5; ДЛ-14: §81, 82, 85, МП-7; МП-8

Дистанционное обучение: ОЛ-4: §1.1 – 1.7; ОЛ-6: §1.1 – 1.5; ДЛ-14: §81, 82, 85; МП-8; МП-7: гл. 5.

Лекция 8 . Элементы релятивистской механики.

Преобразования Галилея. Инвариантность уравнений механики относительно преобразований Галилея. Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца. Кинематические следствия из преобразований Лоренца. Релятивистский закон сложения скоростей. Интервал событий. Элементы релятивистской динамики. Взаимосвязь массы и энергии. Связь между импульсом и энергией релятивистской частицы. Основное уравнение релятивистской динамики.

Очное обучение: ОЛ-2: § 6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20

Дистанционное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20; МП-7: гл. 6.

Семинар 4 . Закон сохранения энергии в механике.

Очное обучение: Ауд.: ОЛ-8: 1.158, 1.180, 1.194, 1.211, 1.310(б) или ОЛ-9: 1.148, 1.164, 1.176, 1.191, 1.282(б), 1.292(б)

Дома: ОЛ-8: 1.149, 1.169 или ОЛ-9: 1.142, 1.157; + ОЛ-10: 2.76, 2.87

Дистанционное обучение: ОЛ-8: 1.149, 1.158, 1.169, 1.180, 1.194, 1.211, 1.310(б) или ОЛ-9: 1.142, 1.148, 1.157, 1.164, 1.176, 1.191, 1.282(б), 1.292(б); + ОЛ-10: 2.76, 2.87, МП-5 гл.4

Очное и дистанционное обучение: ОЛ-1, ОЛ-2, ОЛ-4, ОЛ-6

Лекция 9. Элементы релятивистской механики.

Преобразования Галилея. Инвариантность уравнений механики относительно преобразований Галилея. Специальная теория относительности. Постулаты Эйнштейна. Преобразования Лоренца. Кинематические следствия из преобразований Лоренца. Релятивистский закон сложения скоростей. Интервал событий. Элементы релятивистской динамики. Взаимосвязь массы и энергии. Связь между импульсом и энергией релятивистской частицы. Основное уравнение релятивистской динамики.

Читайте также:
Лекция 6.5

Очное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20

Дистанционное обучение: ОЛ-2: §6.1 – 6.8; ОЛ-5: §7.1 – 7.5, 8.1 – 8.4; ДЛ-12: §10 – 17, 20; МП-7: гл. 6.

Статистический и термодинамический методы описания макроскопических тел. Термодинамическая система. Термодинамические состояния, обратимые и необратимые термодинамические процессы. Внутренняя энергия и температура термодинамической системы. Теплота и работа. Адиабатически изолированная система. Первое начало термодинамики.

Очное обучение: ОЛ-1: Введение. §1.1 – 1.5; ОЛ-3: §1.1 – 1.7; ДЛ-13: §1, 14, 16; ДЛ-15: §13, 41, 29

Дистанционное обучение: ОЛ-1: Введение, §1.1 – 1.5; ОЛ-3: §1.1 – 1.7; ОЛ-7: §1.1 – 1.2; ДЛ-13: §1, 14, 16; ДЛ-15: §13, 41, 29; МП-6.

Семинар 5 . Колебания и волны.

Очное обучение: Ауд.: ОЛ-8: 3.27, 3.64, 3.85, 3.186 или ОЛ-9: 4.25, 4.57, 4.79, 4.177

Дома: ОЛ-8: 3.12, 3.180 или ОЛ-9: 4.12, 4.176; + ОЛ-10: 6.45, 7.4

Дистанционное обучение: ОЛ-8: 3.12, 3.27, 3.64, 3.85, 3.180, 3.186 или ОЛ-9: 4.12, 4.25, 4.57, 4.79, 4.176, 4.177; + ОЛ-10: 6.45, 7.4, МП-5 гл.5, 6

МОДУЛЬ 2 «Молекулярная физика и термодинамика»

Лекция 11.

Уравнения состояния термодинамических систем. Уравнение Клапейрона-Менделеева. Идеально-газовый термометр. Основное уравнение молекулярно-кинетической теории. Равномерное распределение энергии по степеням свободы молекул. Внутренняя энергия идеального газа. Эффективный диаметр и средняя длина свободного пробега молекул газа. Экспериментальные подтверждения молекулярно-кинетической теории.

Очное обучение: ОЛ-1: §2.1 – 2.3; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ДЛ-13: §8, 10, 11; ДЛ-15: §7, 8, 14, 86, 87

Дистанционное обучение: ОЛ-1: §2.1 – 2.3; ОЛ-3: §1.8, 2.2 – 2.5, 7.2; ОЛ-7: §1.5, 1.6, 2.3; ДЛ-13: §8, 10, 11; ДЛ-15: §7, 8, 14, 86, 87; МП-6

Теплоемкость идеального газа при изопроцессах. Адиабатический процесс, уравнение Пуассона. Политропический процесс. Теплоемкость и работа в политропических процессах. Газ Ван-дер-Ваальса. Внутренняя энергия газа Ван-дер-Ваальса.

Очное обучение: ОЛ-1: §2.4 – 2.7; ОЛ-3: §1.9 – 1.13; ОЛ-7: §1.3, 1.4, 1.7; ДЛ-13: §10, 17, 18, 32; ДЛ-15: §18, 21, 98, 103

Дистанционное обучение: ОЛ-1: §2.4 – 2.7; ОЛ-3: §1.9 – 1.13; ОЛ-7: §1.3, 1.4, 1.7; ДЛ-13: §10, 17, 18, 32; ДЛ-15: §18, 21, 98, 103; МП-6

Семинар 6. Теория относительности.

Очное обучение: Ауд.: ОЛ-8: 1.398, 1.415, 1.428, 1.443 или ОЛ-9: 1.365, 1.382, 1.395, 1.409

Дома: ОЛ-8: 1.396, 1.417 или ОЛ-9: 1.363, 1.384; + ОЛ-10 № 5.9, 5.30

Дистанционное обучение: ОЛ-8: 1.396, 1.398, 1.415, 1.417, 1.428, 1.443 или ОЛ-9: 1.363, 1.365, 1.382, 1.384, 1.395, 1.409; ОЛ-10 № 5.9, 5.30, МП-5 гл.7

Очное и дистанционное обучение: ОЛ-1, ОЛ-3, ОЛ-7

Лекция 13.

Тепловые и холодильные машины. Второе начало термодинамики. Цикл Карно. Теорема Карно. Термодинамическая шкала температур. Неравенство Клаузиуса. Термодинамическая энтропия. Закон возрастания энтропии. Третье начало термодинамики.

Очное обучение: ОЛ-1: § 3.1, 3.2, 3.4 – 3.10; ОЛ-3: § 2.11, 3.1 – 3.5; ОЛ-7: § 3.1 – 3.5; ДЛ-13: §19–22; ДЛ-15: §27 – 31, 37, 40, 41

Дистанционное обучение: ОЛ-1: § 3.1, 3.2, 3.4 – 3.10; ОЛ-3: § 2.11, 3.1 – 3.5; ОЛ-7: § 3.1 – 3.5; ДЛ-13: §19–22; ДЛ-15: §27 – 31, 37, 40, 41; МП-6

Основное неравенство и основное уравнение термодинамики. Понятие о термодинамических потенциалах. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна. Введение в термодинамику необратимых процессов.

Очное обучение: ОЛ-1: §4.1 – 4.5; ОЛ-3: §3.6; ОЛ-7: §3.5, 3.6; ДЛ-13: §23, 33, 57; ДЛ-15: §29, 45, 46

Дистанционное обучение: ОЛ-1: §4.1 – 4.5; ОЛ-3: §3.6; ОЛ-7: §3.5, 3.6; ДЛ-13: §23, 33, 57; ДЛ-15: §29, 45, 46

Семинар 7 . Термодинамика.

Очное обучение: Ауд.: ОЛ-8: 6.3, 6.30, 6.47, 6.154 или ОЛ-9: 2.3, 2.30, 2.47, 2.138

Дома: ОЛ-8: 6.32, 6.137 или ОЛ-9: 2.32, 2.122; + ОЛ-10: 11.6, 11.61

Дистанционное обучение: ОЛ-8: 6.3, 6.30, 6.32, 6.47, 6.137, 6.154 или ОЛ-9: 2.3, 2.30, 2.32, 2.47, 2.122, 2.138; + ОЛ-10: 11.6, 11.61, МП-6

Очное и дистанционное обучение: ОЛ-1, ОЛ-3, ОЛ-7

Лекция 15.

Статистическое описание равновесных состояний. Функция распределения. Барометрическая формула. Распределения Больцмана. Принцип детального равновесия. Распределение Максвелла. Экспериментальная проверка распределения Максвелла. Фазовое пространство. Распределение Максвелла-Больцмана. Равновесные флуктуации. Статистическое обоснование второго начала термодинамики. Формула Больцмана для статистической энтропии.

Очное обучение: ОЛ-1: §5.1 – 5.9; ОЛ-3: §1.14, 2.1, 2.6 – 2.8, 2.10; ОЛ-7: §2.1 – 2.4; ДЛ-13: §8 – 10; ДЛ-15: §72, 76, 77

Дистанционное обучение: ОЛ-1: §5.1 – 5.9; ОЛ-3: §1.14, 2.1, 2.6 – 2.8, 2.10; ОЛ-7: §2.1 – 2.4; ДЛ-13: §8 – 10; ДЛ-15: §72, 76, 77, МП-1

Термодинамические потоки. Явления переноса в газах: диффузия, теплопроводность и вязкость. Эффузия в разреженном газе. Физический вакуум. Броуновское движение. Производство энтропии в необратимых процессах.

Очное обучение: О Л-1: §91, 120 – 127; ОЛ-11: §97, 98, 100, 102, 104

Дистанционное обучение: ОЛ-1: §6.1 – 6.5; ОЛ-3: §7.1, 7.3 – 7.7; ОЛ-7: §6.2, 6.3; ДЛ-13: §50 – 52, 54; ДЛ-15: §86 – 89, 93, 95; МП-2

Семинар 8 . Равновесные статистические распределения.

Очное обучение: Ауд.: ОЛ-8: 6.84, 6.96, 6.124, 6.208 или ОЛ-9: 2.81, 2.95, 2.119, 2.252

Дома: ОЛ-8: 6.68, 6.192 или ОЛ-9: 2.68, 2.236; + ОЛ-10: 10.16, 10.60

Дистанционное обучение: ОЛ-8: 6.68, 6.84, 6.96, 6.124, 6.192, 6.208 или ОЛ-9: 2.68, 2.81, 2.95, 2.119, 2.236, 2.252; + ОЛ-10: 10.16, 10.60, МП-1

Лекция 17.

Основные представления о строении жидкостей. Поверхностное натяжение. Формула Лапласа. Смачивание жидкостями поверхностей твердых тел. Капиллярные явления.

Очное обучение: ОЛ-1: §6.1 – 6.5; ОЛ-3: § 7.1, 7.3 – 7.7; ОЛ-7: §5.1 – 5.4; ДЛ-13: §34, 35, 41; ДЛ-15: §111, 112, 116, 120

Дистанционное обучение: ОЛ-1: §7.1 – 7.7; ОЛ-3: §5.1 – 5.5, 6.1-6.5; ОЛ-7: §5.1 – 5.4; ДЛ-13: §34, 35, 41; ДЛ-15: §111, 112, 116, 120

Лекция 18. Обзорная лекция.

Примечание: часть указанного в плане теоретического материала лектор по согласованию с методической комиссией кафедры дает студентам для самостоятельного изучения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: