Урок 17. Основные понятия органической химии

Урок 17. Основные понятия органической химии

ОРГАНИЧЕСКАЯ ХИМИЯ

Основные понятия органической химии

Органическая химияэто область химии, изучающая соединения углерода. Углерод выделяется среди всех элементов тем, что его атомы могут связываться друг с другом в длинные цепи или циклы. Именно это свойство позволяет углероду образовывать миллионы соединений, изучением которых занимается органическая химия.

Теория химического строения А. М. Бутлерова.

Современная теория строения молекул объясняет и огромное число органических соединений, и зависимость свойств этих соединений от их химического строения. Она же полностью подтверждает основные принципы теории химического строения, разработанные выдающимся русским ученым А. М. Бутлеровым.

Основные положения этой теории (иногда ее называют структурной):

1) атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности;

2) свойства вещества определяются не только качественным составом, но и строением, и взаимным влиянием атомов.

3) по свойствам вещества можно определить его строение, а по строению – свойства.

Важным следствием теории строения был вывод о том, что каждое органическое соединение должно иметь одну химическую формулу, отражающую ее строение. Такой вывод теоретически обосновывал хорошо известное уже тогда явление изомерии,— существование веществ с одинаковым молекулярным составом, но обладающих различными свойствами.

Изомерывещества, одинаковые по составу, но разные по строению

Структурные формулы. Существование изомеров потребовало использования не только простых молекулярных формул, но и структурных формул, отражающих порядок связи атомов в молекуле каждого изомера. В структурных формулах ковалентная связь обозначается черточкой. Каждая черточка означает общую электронную пару, связывающую атомы в молекуле.

Структурная формулаусловное изображение строения вещества с учетом химических связей.

Классификация органических соединений.

Для классификации органических соединений по типам и построения их названий в молекуле органического соединения принято выделять углеродный скелет и функциональные группы.

Углеродный скелет представляет собой последовательность химически связанных между собой атомов углерода.

Типы углеродных скелетов. Углеродные скелеты разделяют на ациклические (не содержащие циклов), циклические и гетероциклические.

В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода. В самих углеродных скелетах нужно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя — вторичным, тремя — третичным и четырьмя — четвертичным.

Поскольку атомы углерода могут образовывать между собой не только одинарные, но и кратные (двойные и тройные) связи, то соединения, содержащие только одинарные связи С––С , называют насыщенными, соединения с кратными связями называют ненасыщенными.

Углеводородысоединения, в которых атомы углерода связаны только с атомами водорода.

Углеводороды признаны в органической химии родоначальными. Разнообразные соединения рассматриваются как производные углеводородов, полученные введением в них функциональных групп.

Функциональные группы. В большинстве органических соединений, кроме атомов углерода и водорода, содержатся атомы других элементов (не входящие в скелет). Эти атомы или их группировки, во многом определяющие химические и физические свойства органических соединений, называют функциональными группами.

Функциональная группа оказывается окончательным признаком, по которому соединения относятся к тому или иному классу.

Важнейшие функциональные группы

Гомологический ряд. Для описания органических соединений полезным является понятие гомологического ряда. Гомологический ряд образуют соединения, отличающиеся друг от друга на группу —СН2— и обладающие сходными химическими свойствами. Группы СН2 называются гомологической разностью.

Примером гомологического ряда может служить ряд предельных углеводородов (алканов). Простейший его представитель — метан СН4. Гомологами метана являются: этан С2Н6, пропан С3Н8, бутан С4Н10, пентан С5Н12, гексан С6Н14, гептан С7Н16 и т. д. Формула любого последующего гомолога может быть получена прибавлением к формуле предыдущего углеводорода гомологической разности.

Состав молекул всех членов гомологического ряда может быть выражен одной общей формулой. Для рассмотренного гомологического ряда предельных углеводородов такой формулой будет СnН2n+2, где n — число атомов углерода.

Номенклатура органических соединений. В настоящее время признана систематическая номенклатура ИЮПАК (IUРАС — Международный союз теоретической и прикладной химии).

По правилам ИЮПАК название органического соединения строится из названия главной цепи, образующего корень слова, и названий функций, используемых в качестве приставок или суффиксов.

Для правильного построения названия необходимо провести выбор главной цепи и нумерацию атомов углерода в ней.

Нумерацию атомов углерода в главной цепи начинают с того конца цепи, ближе к которому расположена старшая группа. Если таких возможностей оказывается несколько, то нумерацию проводят таким образом, чтобы либо кратная связь, либо другой заместитель, имеющийся в молекуле, получили наименьший номер.

В карбоциклических соединениях нумерацию начинают от того атома углерода, при котором находится старшая характеристическая группа. Если при этом невозможно выбрать однозначную нумерацию, то цикл нумеруют так, чтобы заместители имели наименьшие номера.

В группе циклических углеводородов особо выделяются ароматические углеводороды, для которых характерно наличие в молекуле бензольного кольца. Некоторые широко известные представители ароматических углеводородов и их производных имеют тривиальные названия, использование которых разрешено правилами ИЮПАК: бензол, толуол, фенол, бензойная кислота.

Радикал С6Н5—, образованный из бензола, называется фенил, а не бензил. Бензилом называют радикал С6Н5СН2—, образованный из толуола.

Читайте также:
Урок 28. Понятие о полимерах

Составление названия органического соединения. Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь (мет-, эт-, проп-, бут-, пент: гекс- и т. д.). Затем следует суффикс, характеризующий степень насыщенности, -ан, если в молекуле нет кратных связей, -ен при наличии двойных связей и -ин для тройных связей, (например пентан, пентен, пентин). Если кратных связей в молекуле несколько, то в суффиксе указывается число таких связей: –диен, –триен, а после суффикса обязательно арабскими цифрами указывается положение кратной связи (например, бутен-1, бутен-2, бутадиен-1,3):

Далее в суффикс выносится название самой старшей характеристической группы в молекуле с указанием ее положения цифрой. Прочие заместители обозначаются с помощью приставок. При этом они перечисляются не в порядке старшинства, а по алфавиту. Положение заместителя указывается цифрой перед приставкой, например: 3-метил; 2-хлор и т. п. Если в молекуле имеется несколько одинаковых заместителей, то перед названием соответствующей группы словом указывается их количество (например, диметил-, трихлор- и т. д.). Все цифры в названиях молекул отделяются от слов дефисом, а друг от друга запятыми. Углеводородные радикалы имеют свои названия.

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

В качестве примера назовем следующее соединение:

1) Выбор цепи однозначен, следовательно, корень слова — пент; далее следует суффикс −ен, указывающий на наличие кратной связи;

2) порядок нумерации обеспечивает старшей группе (—ОН) наименьший номер;

3) полное название соединения заканчивается суффиксом, обозначающим старшую группу (в данном случае суффикс –ол указывает на наличие гидроксильной группы); положение двойной связи и гидроксильной группы указывается цифрами.

Следовательно, приведенное соединение называется пентен-4-ол-2.

Тривиальная номенклатура представляет собой совокупность несистематических исторически сложившихся названий органических соединений (пример: ацетон, уксусная кислота, формальдегид и т. д.).

Выше было показано, что способность атомов углерода к образованию четырех ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава — изомеров. Все изомеры делят на два больших класса — структурные изомеры и пространственные изомеры.

Структурными называют изомеры с разным порядком соединения атомов.

Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.

Структурные изомеры. В соответствии с приведенной выше классификацией органических соединений по типам среди структурных изомеров выделяют три группы:

1 ) соединения, отличающиеся углеродными скелетами:

2) соединения, отличающиеся положением заместителя или кратной связи в молекуле:

3) соединения, содержащие различные функциональные группы и относящиеся к различным классам органических соединений:

Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры.

Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.

Взаимное влияние атомов в молекуле.

Все составляющие молекулу атомы находятся во взаимосвязи и испытывают взаимное влияние. Это влияние передается в основном через систему ковалентных связей с помощью так называемых электронных эффектов.

Электронными эффектами называют смещение электронной плотности в молекуле под влиянием заместителей.

Атомы, связанные полярной связью, несут частичные заряды, обозначаемые греческой буквой “дельта” (δ ). Атом, “оттягивающий” электронную плотность δ -связи в свою сторону, приобретает отрицательный заряд δ − . При рассмотрении пары атомов, связанных ковалентной связью, более электроотрицательный атом называют электроноакцептором. Его партнер по δ -связи соответственно будет иметь равный по величине дефицит электронной плотности, т. е. частичный положительный заряд δ +, и будет называтьсяэлектронодонором.

Смещение электронной плотности по цепи σ -связей называется индуктивным эффектом и обозначается I.

Индуктивный эффект передается по цепи с затуханием. Направление смещения электронной плотности всех σ -связей обозначается прямыми стрелками.

В зависимости от того, удаляется ли электронная плотность от рассматриваемого атома углерода или приближается к нему, индуктивный эффект называют отрицательным (-I) илиположительным (+I). Знак и величина индуктивного эффекта определяются различиями в электроотрицательности между рассматриваемым атомом углерода и группой, его вызывающей.

Электроноакцепторные заместители, т.е. атом или группа атомов, смещающие электронную плотность σ -связи от атома углерода, проявляют отрицательный индуктивный эффект (−I-эффект).

Электронодонорные заместители, т. е. атом или группа атомов, смещающие электронную плотность к атому углерода, проявляют положительный индуктивный эффект(+I-эффект).

+I-эффект проявляют алифатические углеводородные радикалы, т. е. алкильные радикалы (метил, этил и т. д.).

Большинство функциональных групп проявляют -I-эффект: галогены, аминогруппа, гидроксильная, карбонильная, карбоксильная группы.

Индуктивный эффект проявляется и в случае, когда связанные атомы углерода различны по состоянию гибридизации. Так, в молекуле пропена метильная группа проявляет +I-эффект, поскольку атом углерода в ней находится в sp3-гибридном состоянии, а sp2-гибридизованный атом (при двойной связи) выступает в роли электроноакцептора, так как имеет более высокую электроотрицательность :

При передаче индуктивного эффекта метильной группы на двойную связь в первую очередь ее влияние испытывает подвижная π -связь.

Читайте также:
Урок 22. Спирты

Влияние заместителя на распределение электронной плотности, передаваемое по π -связям, называют мезомерным эффектом (М). Мезомерный эффект также может быть отрицательным и положительным. В структурных формулах его изображают изогнутой стрелкой, начинающейся у центра электронной плотности и завершающейся в том месте, куда смещается электронная плотность.

Наличие электронных эффектов ведет к перераспределению электронной плотности в молекуле и появлению частичных зарядов на отдельных атомах. Это определяет реакционную способность молекулы.

Классификация органических реакций

− Классификация по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций — радикальные и ионные.

Радикальные реакцииэто процессы, идущие с гомолитическим разрывом ковалентной связи. При гомолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гомолитического разрыва образуются свободные радикалы:

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакцииэто процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остаются с одной из ранее связанных частиц:

В результате гетеролитического разрыва связи получаются заряженные частицы: нуклеофильная и электрофильная.

Нуклеофильная частица (нуклеофил) — это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь.

Электрофильная частица (электрофил) — это частица, имеющая незаполненный внешний электронный уровень. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той частицы, с которой он взаимодействует .

−Классификация по составу и строению исходных веществ и продуктов реакции. В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, участвующего в реакции. Наиболее часто встречаются следующие типы превращений:

присоединение

отщепление (элиминирование)

полимеризация

В соответствии с вышеизложенным хлорирование метана под действием света классифицируют как радикальное замещение, присоединение галогенов к алкенам — как электрофильное присоединение, а гидролиз алкилгалогенидов — как нуклеофильное замещение.

Урок 17. Основные понятия органической химии – HIMI4KA

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами — H, N, O, S, P. Кстати, эти элементы называются органогенами.

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Чтобы хотя бы минимально понять органическую химию, приготовьтесь много читать

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Валентность атома углерода

Под валентностью понимают, что это то количество связей, которые образовывает химический элемент. Один из основополагающих законов органической химии гласит, что в органических соединениях у атома углерода валентность постоянна и равняется 4 (т. к. в возбужденном состоянии у него 4 неспаренных электрона)

Углеродные связи в органических веществах

В ходе протекания химической реакции органические вещества претерпевают изменения, поскольку происходит разрушение старых и образование новых связей. Глядя на молекулу, опытный химик-органик скажет, какая именно связь разрушится, под действием каких факторов и предскажет, какие продукты и какого строения получатся в конце превращения.

Формулы органических соединений

Формулы органических соединений можно изображать по-разному. Состав молекулы отражает молекулярная (эмпирическая) формула:

Но эта формула не показывает расположения атомов в молекуле, т. е. строения молекулы вещества. А в органической химии это понятие — химическое строение молекулы вещества — самое главное! Последовательность соединения атомов в молекуле показывает графическая (структурная) формула. Например, для вещества строения С4Н10 можно написать две такие формулы:

Можно показать все химические связи:

Такие развёрнутые графические формулы наглядно показывают, что атом углерода в органических молекулах четырёхвалентен. При составлении графических формул нужно сначала изобразить углеродную цепь, например:

Затем чёрточками обозначить валентность каждого атома углерода:

У каждого атома углерода должно быть четыре чёрточки!

Затем заполнить «свободные» валентности атомами водорода (или другими одновалентными атомами или группами).

Теперь можно переписать эту формулу в сокращённом виде:

Если вы хотите сразу написать такую формулу для бутана — ничего сложного нет, нужно только считать до четырёх. Изобразив углеродный «скелет», нужно задать себе вопрос: сколько валентностей (чёрточек) имеет данный конкретный атом углерода?

Две. Значит, нужно добавить 2 атома водорода:

Следует помнить, что графические формулы можно записывать по-разному. Например, графическую формулу бутана можно записать так:

Поскольку последовательность расположения атомов не нарушилась, то это формулы одного и того же соединения(!) Проверить себя можно, составив названия этих соединений (см урок 17.7). Если названия веществ совпадают, то это — формулы одного и того же вещества.

Гомологи

Из того же положения теории строения органических соединений Бутлерова следует, что вещества, имеющие похожее (сходное) строение молекул, должны иметь и похожие (сходные) свойства. Органические соединения, которые имеют похожее строение, а, значит, и похожие свойства, образуют гомологические ряды.

Читайте также:
Урок 20. Алкины

Например, углеводороды, в составе молекул которых есть только одна двойная связь, образуют гомологический ряд алкенов:

Углеводороды, в молекулах которых имеются только простые связи, образуют гомологический ряд алканов:

Члены любого гомологического ряда называются ГОМОЛОГАМИ.

Гомологи — это органические соединения, которые похожи по химическому строению и, значит, по свойствам. Гомологи отличаются друг от друга по составу на группу СН2 или (СН2)n.

Убедимся в этом на примере гомологического ряда алкенов:

Задание 17.3. Сравните состав членов гомологического ряда алканов (гомологов алканов) и убедитесь, что по составу они отличаются на группу СН2 или (СН2)n.

Выводы

Гомологи похожи по строению, а значит, и по свойствам; гомологи отличаются по составу на группу СН2. Группа СН2 называется гомологической разностью.

Общее строение атома углерода

Углерод в ПСХЭ находится во 2 периоде главной подгруппы 4 группы с порядковым номером 6. Обозначается символом С и масса — 12 а.е.м.

Зная эти основные цифры, можно подробно разобрать схему строения углеродного атома. У него 2 составляющие: ядро,заряженное положительно и электроны, которые заряжены отрицательно и находятся в пространстве вокруг него.

Порядковый номер элемента численно равен заряду ядра и числу в нем электронов. Число нейтронов вычисляется по формуле:

где А – массовое число, Nп – число протонов, Nн – число нейтронов.

Получаем, что количество нейтронов равно: Nн = А – Nп = 12-6 = 6

На рисунке 1 видно наглядно, какое строение у атома углерода.

Рисунок 1. – Строение атома углерода

Подробное электронное строение атома углерода

Ядро элемента не несет интереса в описаниях химических реакций, так как связи образуются при объединении электронных оболочек. При их связывании и перераспределении электронной плотности образуются новые молекулы.

Электронная структура

По расположению в ПСХЭ наглядно видно, что углерод имеет:

  • 2 уровня, отличающихся по энергии;
  • 4 штуки электронов на внешнем энергетическом уровне.

На первом энергетическом уровне в s-орбитали у всех элементов находятся 2 электрона. (см.рис.1). Второй уровень, он же и внешний для углерода, состоит из одной s и трех p орбиталей, и расположение электронов в них зависит от того, в каком состоянии находится атом.

Основное и возбужденное состояние

В основном состоянии на s и p орбиталях расположено по 2 электрона.

Если электрону, находящемуся на s-орбитали, добавить некоторое количество энергии из вне, то он может «перескочить» в пустую p-орбиталь с большей энергией.

Возбужденное состояние атома углерода представляет собой такую конфигурацию, при которой на внешнем уроне каждая его орбиталь имеет по 1 электрону.

Переход из основного состояния в возбужденное называется активацией.

На рисунке 2 схематически изображен процесс активации.

Рисунок 2. – Переход электрона с 2s-орбитали на 2p-орбиталь под действием дополнительной энергии

Атом углерода образует связи с другими элементами и между собой благодаря объединению неспаренных электронов. Если сравним конфигурацию атома углерода в возбужденном состоянии с конфигурацией в основном, можно сделать вывод о том, что в возбужденном состоянии он способен образовать больше ковалентных связей. В этом состоянии ему нужно быстро находить в окружении себя другие элементы и химически с ними связываться, так как при отсутствии дополнительной энергетической подпитки электрон снова перейдет с p-орбитали на s.

Знание о возбужденном состоянии атома углерода позволило в дальнейшем описывать механизмы реакций, рисовать структурные формулы веществ и описывать расположение молекул в пространстве.Полученные знания в 1861 году обобщил А.М. Бутлеров.

Другие полезные ресурсы

Уравнивание химических уравнений — один из важных навыков, которые важно освоить на начальном этапе изучения химии. Ресурс можно добавить в закладки на телефоне и тренироваться, когда появляется свободное время.

Постнаука — проект о современной фундаментальной науке. На портале есть отдельный раздел, посвящённый химии. Здесь есть интервью известных учёных, научно-популярные статьи и подробные разборы как работают химические процессы.

урок 17. Урок 17. Основные понятия органической химии. Урок 17. Основные понятия органической химии

Урок 17. Основные понятия органической химии
Известно, что все сложные вещества условно можно разделить на органические и неорганические.

В состав неорганических веществ может входить любой элемент периодической системы. Основными классами неорганических веществ являются оксиды, кислоты, основания и соли. Свойства этих веществ были рассмотрены в первых двух разделах.

В состав органических веществ обязательно входит атом углерода, который в подавляющем числе органических соединений образует цепи. Эти цепи имеют разную длину и разное строение, поэтому органических соединений теоретически может быть бесчисленное множество.

Основу любого органического соединения составляет углеводородная цепь, которая может соединяться с функциональными группами.

Свойства органического соединения описывают по схеме:

  • определение;
  • гомологический ряд;
  • изомерия;
  • номенклатура (названия);
  • строение молекулы (углеводородной цепи и функциональных групп);
  • свойства, связанные со строением
    • функциональной группы;
    • углеводородного радикала;
  • особые свойства;
  • получение и применение.

Прочитав очередной урок, попробуйте описать изучаемые соединения на любом примере, используя эту схему. И всё получится!
Предмет органической химии. Теория строения органических веществ

Органические вещества известны людям с давних пор. Ещё в древности люди использовали сахар, животные и растительные жиры, красящие и душистые вещества. Все эти вещества выделялись из живых организмов. Поэтому такие соединения стали называться органическими, а раздел химии, который изучал вещества, образующиеся в результате жизнедеятельности живых организмов, получил название «органическая химия». Это определение было дано шведским учёным Берцелиусом* в 1827 году.

Читайте также:
Урок 18. Алканы

* Берцелиус Йенс Якоб (20.08.1779–7.08.1848) — шведский химик. Проверил и доказал ряд основных законов химии, определил атомные массы 45 химических элементов, ввёл современное обозначение химических элементов (1814) и первые химические формулы, разработал понятия «изомерия», «катализ» и «аллотропия».

Уже первые исследователи органических веществ отмечали особенности этих соединений. Во-первых, все они при сжигании образуют углекислый газ и воду, значит, все они содержат атомы углерода и водорода. Во-вторых, эти соединения имели более сложное строение, чем минеральные (неорганические) вещества. В-третьих, возникали серьёзные затруднения, связанные со способами получения и очистки этих соединений. Полагали даже, что органические соединения невозможно получить без участия «жизненной силы», которая присуща только живым организмам, то есть органические соединения нельзя, казалось, получить искусственно.

И, наконец, были обнаружены соединения одинакового молекулярного состава, но различные по свойствам. Такое явление не было характерно для неорганических веществ. Если для неорганического вещества известен состав, то известны и его свойства.

Вопрос. Какими свойствами обладают H2SO4; Ca(OH)2?

А химики-органики обнаружили, что вещество состава С2Н6О у одних исследователей является достаточно инертным газом, а у других — жидкостью, активно вступающей в разнообразные реакции. Как это объяснить?

К середине 19-го века было создано немало теорий, авторы которых пытались объяснить эти и другие особенности органических соединений. Одной из таких теорий стала теория химического строения Бутлерова*.

* Бутлеров Александр Михайлович (15.09.1928–17.08.1886) — русский химик. Создал теорию химического строения органических веществ, лежащей в основе современной химии. Предсказал изомерию многих органических соединений, заложил основы учения о таутомерии.

Некоторые её положения были изложены А. М. Бутлеровым в 1861 году на конференции в г. Шпейере, другие были сформулированы позже в научных работах А. М. Бутлерова. В целом, основные положения этой теории в современном изложении можно сформулировать так.

1. Атомы в молекулах располагаются в строгом порядке, согласно их валентности.

2. Атом углерода в органических молекулах всегда имеет валентность равную четырём.

3. Порядок соединений атомов в молекуле и характер химических связей между атомами называется химическим строением.

4.Свойства органических соединений зависят не только от того, какие атомы и в каких количествах входят в состав молекулы, но и от химического строения:

  • вещества разного строения имеют разные свойства;
  • вещества похожего строения имеют похожие свойства.

5. Изучая свойства органических соединений, можно сделать вывод о строении данного вещества и описать это строение одной-единственной химической формулой.

6. Атомы в молекуле влияют друг на друга, и это влияние сказывается на свойствах вещества.

При изучении органической химии нужно чаще вспоминать эти положения и, прежде чем описывать свойства какого-либо вещества, следует указать его строение при помощи химической формулы, в которой будет показан порядок соединения атомов в молекуле — графическая формула.
Особенности строения органических соединений

Органическая химия изучает строение молекул и свойства соединений углерода, кроме самых простых (угольная и синильная кислоты и их соли).

В состав неорганических соединений могут входить любые из 114 известных в настоящее время химических элементов. Сейчас известно более 0,5 млн неорганических веществ.

В состав органических молекул обычно входят атомы 6 химических элементов: C, H, O, N, P, S . И тем не менее в настоящее время известно более 20 миллионов органических соединений.

Почему органических веществ так много?

Поскольку в состав любого органического соединения входит атом углерода, попробуем найти ответ на этот вопрос, рассмотрев особенности строения атома углерода.

Углерод — химический элемент 2-го периода, IV группы Периодической системы химических элементов Менделеева, следовательно, строение его атома можно изобразить так:

Таким образом, на внешнем уровне атома углерода находится четыре электрона. Являясь неметаллом, атом углерода может и отдавать четыре электрона, и принимать до завершения внешнего уровня также четыре электрона. Поэтому:

  • атом углерода в органических соединениях всегда четырёхвалентен;
  • атомы углерода способны соединяться друг с другом, образуя цепи различной длины и строения;
  • атомы углерода соединяются друг с другом и с другими атомами при помощи ковалентной связи, которую в формуле обозначают чёрточкой; так как валентность атома углерода равна четырём, — общее число чёрточек (химических связей) у одного атома углерода тоже равно четырём.

В состав углеродных цепочек может входить разное число атомов углерода: от одного до нескольких тысяч. Кроме того, цепочки могут иметь разное строение:

Между атомами углерода могут возникать химические связи разного типа:

Поэтому всего лишь четыре (!) атома углерода могут образовать более 10 соединений разного строения, даже если в состав таких соединений будут входить только атомы углерода и водорода. Эти соединения будут иметь, например, следующие «углеродные скелеты»:

Тема урока: “Предмет органической химии”

Разделы: Химия

– Дать понятие о предмете органической химии.

– Показать особенности органических веществ в сравнении с неорганическими.

– Сформировать понятие о валентности в сравнении со степенью окисления.

– Раскрыть основные положения теории строения органических соединений А.М. Бутлерова. Сравнить ее значение для органической химии с теорией периодичности Д.И. Менделеева для неорганической химии.

Читайте также:
Урок 21. Циклические углеводороды. Арены

Оборудование и реактивы. Органические вещества для демонстрации: сахароза, крахмал, уксусная кислота, растительное масло. Шаростержневые модели молекул органических веществ. Оксид меди (II), известковая вода, прибор для получения газов, парафиновая свеча, прокаленный сульфат меди (II).

С глубокой древности человечество использовало для удовлетворения своих потребностей вещества растительного и животного происхождения. Прежде всего это, конечно, продукты питания, одежда, вещества для выделки кож, растительные и эфирные масла. По мере развития цивилизации люди научились выделять и использовать природные красители, лекарственные и душистые вещества, натуральные волокна и вместе с тем яды, опьяняющие, одурманивающие и взрывчатые средства.(демонстрирую фотографии, фильм).

Давно было замечено, что “растительные и животные” соединения обладают похожими свойствами: легко разрушаются при нагревании, горят, растворяются в спиртах и в маслах. Систематическое изучение этих “нежных” веществ началось с работ выдающихся ученых: шведского химика Карла Вильгельма Шееле и создателя научной химии, француза Антуана Лорана Лавуазье. Лавуазье в конце XVIII века первым высказал причину резкого отличия в свойствах минеральных веществ и продуктов живой природы. При сжигании последних образовывались главным образом углекислый газ и вода. На основании многочисленных опытов он пришел к выводу, что “в состав растительных и животных тел” входит небольшое число элементов: углерод, водород, кислород и также иногда азот и фосфор.

Демонстрирую опыт, подтверждающий наличие углерода и водорода в органическом веществе. В пробирку с газоотводной трубкой, закрепленную в лапке штатива, помещают смесь 1—2 г крахмала с небольшим количеством порошка оксида меди (II), газоотводную трубку опускают в пробирку с известковой водой. В верхнюю часть пробирки насыпают немного белого порошка прокаленного (безводного) сульфата меди (II). Пробирку нагревают, наблюдая за обугливанием ее содержимого и помутнением известковой воды в результате выделения углекислого газа. На холодных стенках пробирки конденсируются капельки воды, которые превращают безводный сульфат меди в кристаллогидрат голубого цвета. Схему реакций можно записать так:

В начале XIX в. назрела необходимость выделить химию веществ растительного и животного происхождения в самостоятельную науку. Возникновение этой науки тесно связано с именем знаменитого шведского химика Йенса Якоба Берцелиуса, давшего ей название “органическая химия”. (Рисунок 1, 2, 3, 5)

Органическая химия – это химия соединений углерода, также в состав органических соединений входит водород, реже кислород, азот, сера, фосфор, галогены и некоторые металлы.

В заключение этой части урока нужно обратить внимание учащихся на то, что проводить резкую черту между химией органической и неорганической нельзя. Есть много примеров генетической связи между веществами обеих групп.

II. Особенности органических веществ. (Рисунок 4)

1. Атом углерода способен соединяться с другими атомами в цепи и кольца. (Демонстрация фрагмента фильма – “Органические вещества”).

2. В органических соединениях связь – ковалентная.

3. Органические вещества взаимодействуют с большим трудом или совсем не взаимодействуют (связь ковалентная очень прочная и разрушить ее очень сложно).

4. При нагревании (400-600 0 С) органические вещества полностью разлагаются и обугливаются, в присутствии кислорода сгорают до углекислого газа и воды.

5. Особенное строение атома углерода. (Рисунок 6)

(Демонстрация фрагмента фильма – “Органические вещества”).

6. В органической химии очень часто используют структурные формулы.

Электронная формула Н : С : С : Н

Структурная формула Н – С – С – Н

7. Вместо понятия степени окисления в органической химии применяют понятие валентность.

Это связано с тем, что большинство органических веществ имеет ковалентный тип связи и молекулярное (а не ионное) строение.

8. Широко распространено явление “изомерии”

Вещества, имеющие одинаковый состав и одинаковую молекулярную массу но различное строение молекул, а поэтому обладающие разными свойствами называются изомерами.

Состав органического вещества – С2Н6О.

III. Теория строения органических соединений.

Подчеркивая единство органической и неорганической химии как двух разделов одной науки, провожу параллель между основным законом неорганики — Периодическим законом Д. И. Менделеева и основополагающей теорией органической химии — теорией химического строения органических соединений А.М. Бутлерова.

А.М. Бутлеров был разносторонне образованным человеком. С детства он увлекался биологией, внес весомый вклад в развитие отечественного пчеловодства, ботаники, сельского хозяйства. Однако делом всей жизни для Бутлерова была химия. Он проводил многочисленные опыты с органическими веществами, синтезировал ряд новых соединений. Анализируя известные к тому времени сведения о составе и свойствах органических соединений, Александр Михайлович формулирует положения теории химического строения. Впервые он изложил их в докладе “О химическом строении тел” на съезде врачей и естествоиспытателей в немецком городе Шпейере 19 сентября 1861 г.

А.М. Бутлеров впервые предложил ввести термин “химическое строение”, под которым он понимал порядок связи атомов в молекуле. Основная мысль состоит в том, что атомы связаны между собой в определенной последовательности согласно их валентности, причем неиспользованных валентностей не остается, а углерод в органических соединениях всегда четырехвалентен. Строение каждого вещества может быть изображено только одной структурной формулой. Следствием того, что химические свойства веществ определяются их строением, является вывод о взаимном влиянии атомов в молекулах. “Атомы водорода, соединенные с углеродом, ведут себя иначе, чем соединенные с кислородом”, — писал Бутлеров в статье “О различных объяснениях случаев изомерии” в 1863 г.

Читайте также:
Урок 24. Карбоновые кислоты

В заключение предлагаю учащимся решить простейшую задачу на расчет по химическому уравнению или определению формулы вещества по массовым долям элементов.

При решении задач на расчет объема газов вспомнить и применить закон объемных отношений Гей-Люссака: объемы реагирующих газообразных веществ относятся друг к другу и к объемам газообразных продуктов реакции как целые числа, равные коэффициентам в уравнении реакции.

1. Какой объем оксида углерода (IV) выделится при сжигании 50 л этана (н.у.)?

2. Углеводород, молярная масса которого 78 г/моль, содержит 92,31% углерода. Определите его молекулярную формулу.

IV. Закрепление пройденного материала.

Прошу учащихся ответить на поставленные мной вопросы:

  1. Что такое органическая химия.
  2. Какие главные особенности органических веществ от неорганических.
  3. Какой ученый является основоположником органической химии.
  4. Назовите основные положения теории орг. Соединений А. М. Бутлерова.

Основные понятия органической химии

Введение в органическую химию. Развитие науки.

Просмотр содержимого документа
«Основные понятия органической химии»

Основные понятия органической химии и теория строения органических соединений.

Органическая химия – раздел химии, изучающий органические вещества, их строение и закономерности реакций с участием органических соединений.

Органические вещества использовались человеком с древних времен.

Поначалу ученые предполагали, что органические вещества могут образовываться только в живой материи под действием «жизненной силы». Поэтому одно время органическими веществами считались только минералы, растения и животные.

К началу 19 века ученые выяснили, что растительная и животная клетка состоит из… Как вы думаете из чего? (белки, жиры, углеводы и др. вещества). В свою очередь в состав этих веществ обязательно входят атомы углерода, что позволило объединить их в одну большую группу – органические вещества.

Помимо углерода, в состав органических веществ входят такие вещества как, кислород, азот, некоторые – галогены, сера, фосфор и водород. В различных сочетаниях эти элементы образуют твердые, жидкие, газообразные вещества различного цвета, вкуса, запаха.

Углерод и водород образуют множество классов органических соединений, которые так и называют углеводороды. Все остальные классы органических веществ можно рассматривать как производные углеводородов. Благодаря этому немецкий химик Карл Шорлеммер дал определение органической химии.

Органическая химия – химия углеводородов и их производных, т. е. продуктов, образующихся при замене атомов водорода другими атомами или группы атомов.

Со временем ученые с помощью опытов доказали, что органические вещества можно найти не только в живых организмах. А так же и в неорганических соединениях. Так, например Ф. Вёлер синтезировал органическое вещество – мочевину из неорганического цианата аммония. Французский ученый М. Бертло в 1854 г. получил в пробирке жир, а в 1861 г. русский химик Бутлеров синтезировал сахар.

В настоящее время уже обнаружено примерно 4.5 миллиона органических соединений, среди которых есть и такие вещества, которые ранее не были обнаружены в живой природе.

Многообразие органических веществ заключается в том, что в состав молекул органических веществ могут входить десятки, а иногда и тысячи атомов, к тому же порядок расположения этих атомов может быть различным.

Органических вещества можно разделить на 3 типа: природные, искусственные и синтетические.

Природные органические вещества – это продукты жизнедеятельности живых организмов. Например: белки, жиры, углеводы, гормоны, ферменты, витамины и др.

Искусственные – это продукты химических преобразований природных веществ в соединения, которые в живой природе не встречаются (искусственные волокна, кино – фотопленки, пластмассы и др.)

Синтетические – это соединения, которые получают путем соединения простых молекул в более сложные, не встречающие в природе (синтетический каучук, лекарства, красители, синтетические витамины).

Для получения органических веществ, в промышленности, органический синтез использует в качестве сырья природные и промышленные газы, нефть, каменный и бурый угль, древесину, горючие сланцы отходы сельскохозяйственного производства.

Главными отличиями органических веществ от неорганических заключается в том, что они менее стойки, при нагревании обугливаются и сгорают, большинство органических соединений не диссонируют на ионы, углерод в их молекулах может быть соединён почти с любым элементом периодической системы. Органическим соединениям свойственна способность образовывать только ковалентные химические связи между атомами.

В 20 веке были установлены основные положения для создания теории строения органических веществ, таких как атомная масса, валентность. Немецким химиком А. Кекуле было определено, что в своих соединениях углерод имеет постоянную валентность, всегда равную, и что атомы углерода способны образовывать цепи.

Благодаря этим открытиям русский химик Александр Михайлович Бутлеров составил теорию строения органических соединений. Основные положения которой говорят:

Атомы в молекулах соединены друг с другом согласно их валентности. Углерод в органических веществах всегда четырехвалентен, а его атомы могут соединяться в цепи линейного, разветвленного, замкнутого строения.

Валентность углерода, как в простых, так и в сложных соединениях атома, может затрачивать по 1, по две или по три связи, химическое строение органических веществ выражают при помощи структурных формул.

Структурная формула – это изображение молекулы, в котором показана каждая химическая связь.

Структурные формулы с обозначением каждого атома с усложнением молекул становятся трудночитаемыми, поэтому их принято записывать в сокращенной форме.

Свойства органических веществ определяются не только их качественным и количественным составом, но и порядком связи атомов в молекуле, т.е. химическим строением.

Читайте также:
Урок 26. Углеводы

Например, вещество С2Н6О(?), при одинаковом количестве атомов, может иметь различные агрегатные состояния из – за разности построения молекул вещества (газ и жидкость). При этом свойства их тоже различны. Диметиловый эфир (СН3ОСН3) – мало растворим в воде, не реагирует с натрием.

Этиловый спирт (СН3СН2ОН) – растворим в воде, реагирует с Ме Na.

Такое явление получило название изомерии.

Изомер – это вещества, имеющие одинаковый качественный и количественный элементарный состав, но различное строение.

Химические свойства атома или группы атомов могут изменяться в зависимости от присутствия других атомов или групп в молекуле, особенно связанных друг с другом.

Создав понятие химического строения, Бутлеров привел органические соединения в определенную систему.

Органические вещества делятся на 2 группы:

Ациклические (алифатические) соединения вещества, имеющие не замкнутую, прямую или разветвлённую цепь углеродов атомов:

Циклические соединения – вещества, в молекулах которых имеются замкнутые цепи атомов.

Карбоциклические – циклы состоят только из атомов углерода.

Гетероциклические соединения – вещества, содержащие в составе молекул замкнутые цепи, в которые кроме атомов углерода входят атомы других элементов, например кислорода, азота, серы и др.

Каждый из перечисленных соединений может образовывать производные при замещении водорода на неуглеродные атомы или группы: галоген-, гидрокси-, амино-, нитро-, сульфо-,карбонильную-, и др. Такие заместители называют функциональными группами, или функциями.

И так запишем основные классы производных (Таб.)

– И так подведем итог. Что мы свами узнали о органической химии?

Давайте теперь на практике закрепим наши знания.

Органическая химия для “чайников”: история, понятия

  • 12 января 2021 г.
  • 7 минут
  • 80 730

Базовые основы органической химии для чайников

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для “чайников”). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами – H, N, O, S, P. Кстати, эти элементы называются органогенами.

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Чтобы хотя бы минимально понять органическую химию, приготовьтесь много читать

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Органическая химия зародилась давно, просто люди называли это иначе

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Дальше – интереснее: в 1773 году его коллега по ремеслу Руэль сумел выделить мочевину из человеческой мочи.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Совершенно не обязательно быть светилом в химической науке, чтобы понять органическую химию с нуля – читайте наш блог, мы все расскажем!

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

У углерода четыре валентности

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» – поднаука, которая получила название «нефтехимия».

Читайте также:
Урок 25. Сложные эфиры. Жиры

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов, вы всегда знаете, где их найти.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Наталья – контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нейрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

предмет органической химии. Строение органических веществ
план-конспект урока по химии (9 класс) по теме

понятие органическая химия, вклад ученых. строение органических веществ

Скачать:

Вложение Размер
konspekt_uroka_predmet_organich._khimii_9_kl.docx 96.73 КБ

Предварительный просмотр:

Предмет органической химии. Особенности строения органических веществ. Урок в 9 классе.

Цель урока :сформировать представление о составе и строении органических соединений, их отличительных признаках; выявить причины многообразия органических веществ; продолжить формирование умения составлять структурные формулы на примере органических веществ.

Образовательные: сформировать понятие о предмете органической химии, рассмотреть особенности органических веществ; закрепить понятие «валентность»; ознакомить с основными положениями теории химического строения органических соединений; начать формировать навыки составления структурных формул; раскрыть значение органических веществ.

Воспитательные: продолжить формирование познавательного интереса к предмету через использование нестандартных форм обучения и создание ситуации успеха.

Развивающие: развивать учебно-интеллектуальные умения выделять главное и существенное, устанавливать причинно-следственные связи (развивать логическое мышление); продолжить развитие учебно-организационных умений, направленных на выполнение поставленной задачи, осуществление самоконтроля и самоанализа учебной деятельности.

Реактивы и оборудование: органические (жидкие и твердые) кислоты (лимонная – С 6 Н 8 О 7 , стеариновая – С 17 Н 35 СООН, олеиновая – С 17 Н 33 СООН, уксусная – СH 3 COOH,), сахар – С 12 Н 22 О 11 , этиловый спирт (в спиртовке) – С 2 Н 5 ОН, образцы изделий из пластмассы и синтетических волокон (линейки, ручки, капроновые ленты, пуговицы, цветочные кашпо, полиэтиленовые пакеты и т. д.), парафиновая свеча, спички, фарфоровая чашка, пробирка, держатель, шаростержневые модели метана, пропана, бутана

Тип урока: изучение новых знаний.

Методы и методические приемы:

2. Самостоятельная работа с текстом.

3. Проблемная ситуация.

4. Частично-поисковый лабораторный метод.

  1. Габриелян О.С. “Химия”.9 класс. Учебник.М.: Дрофа, 2010.
  2. О.С. Габриелян “Химия”, 9 класс. Настольная книга учителя. М.: Дрофа, 2002.
  3. О.С.Габриелян, Т.В.Смирнова. Изучаем химию в 9 классе.
  4. Материалы Интернета.

«Широко распростирает химия руки свои в дела человеческие. Куда не посмотрим, куда не оглянемся – везде перед очами нашими успехи её применения. »

I. Организационный момент (1 мин.)

Здравствуйте ребята! Садитесь.

Проверяю наличие учебных принадлежностей к уроку.

II. Мотивационный момент (2 мин.)

Мы закончили очередную тему из химии элементов. Прежде чем определиться с названием новой темы, вспомним те химические понятия, которые нам помогут в изучении нового материала.

  • Что изучает химия?

Учащиеся : Химические вещества и их превращения

III. Актуализация знаний (3 мин.)

Ребята, напишите в центре страницы слова «химические вещества». Какие ассоциации у вас связаны с этими словами? Напишите примеры химических веществ в тетради, разместив их вокруг слов «химические вещества».

/оформляю ответы учащихся на доске в виде схемы, поочередно спрашивая всех и следя, чтобы названия веществ не повторялись/

В течении двух лет мы с вами изучали один из разделов химии под названием «неорганическая химия».

Посмотрите на схему и перечислите вещества, которые относятся к неорганической химии . (Например: алмаз, серная кислота, азот, нитрат цинка, карбид кальция.)

  • Какие вещества мы с вами еще не изучали? Назовите их.

( Например: белки, жиры, углеводы, бензол, крахмал, метан.)

Эти вещества относятся к органическим, и изучают их в разделе органической химии.

Все, что нас окружает, кроме горных пород и океана, относится к органической химии. Список органических веществ в настоящее время насчитывает около 25 млн наименований, причем каждый год он пополняется на 200–300 тыс. новых соединений. При этом общее число неорганических веществ около 1 млн (700 000).

Чем обусловлено такое многообразие органических веществ? В чем их особенность? Что общего в составе этих веществ? Почему данные вещества называются органическими? Ответы на эти вопросы мы попробуем получить сегодня на уроке.

  • Сформулируйте тему урока.
  • Чему мы должны научиться, какова цель нашего урока?

IV. Изучение нового материала (20 мин)

Ребята, чтобы ответить на вопрос, что такое органические вещества и органическая химия, вам необходимо поработать с учебником. Прочитайте первые пять абзацев § 32 учебника, с. 193. Составьте определения. Запишите их в тетрадь.

Учащиеся работают с текстом учебника с. 193,

текст читают дозированно, после каждой смысловой части останавливаются, совместно обсуждают проблемные вопросы темы, ведут записи в тетради.

После прочтения первого фрагмента отвечают на вопросы учителя.

Вопросы учащимся для обсуждения:

  • Как произошел термин «органические вещества»?

Органическая химия – наука об органических соединениях и их превращениях. Первоначально органическим считались вещества, найденные в живых организмах и животных. Например :

  1. Это жиры, которые формируются в живых организмах;
  2. Углеводы в большом количестве содержащиеся в растениях;
  3. Природные волокна – источники которых хлопок, бамбук, тутовый шелкопряд
  4. Природный газ – источник огромного количества углеводородов, нефть, газ и каменный уголь – это природные ископаемые, которые образовались при разложение ранее живших организмов.

Но в настоящее время получено очень много новых веществ, которые как считалось ранее образуются только в живых организмах.
например: пластмассы, моющие средства, лекарства и многое другое .

Т.о. органическая химия включает в себя не только вещества, которые синтезируются в живых организмах, но и получают в лабораториях. Но название предмета сохранилось.

  • Кто ввел термин «органическая химия»?

С органическими веществами человек знаком давно: он употребляет их в пищу, шьёт из них одежду, строит жилища. Первые попытки классификации веществ на органические и неорганические были предприняты ещё в 9-10 веках. Арабский алхимик Абу Бакр ар-Рази впервые разделил вещества на минерального, растительного и животного царства. Такая классификация просуществовала до 19 века. В 19 веке шведский химик Якоб Берцелиус предложил делить вещества на органические и неорганические и предложил раздел химии , изучающий эти вещества назвать органической химией . Подумаем почему он так назвал вещества? Берцелиус был представителем виталистического направления, сторонники этого направления считали, что органические вещества создаются только в живых организмах под действием особой « жизненной силы», получить их в лаборатории нельзя, такие взгляды тормозили развитие науки, но они не могли остановить поступательного процесса познания природы.

Термин “органическая химия” был введен шведским ученым Й. Берцелиусом в начале XIX века.

Список важнейших открытий органической химии можно представить следующим образом:
Марковников – выделил из нефти особую группу веществ и дал им название нафтены;

Шеврель – определил состав жиров;

Собатье – ему мы обязаны созданием маргарина;

Вюрц – разработал синтез фенолов, красителей и ряда лекарств;

Зелинский – занимался изучением нефти и ее переработкой, но нам он в большей степени знаком как изобретатель противогаза;

Зинин – синтезировал анилин и красители на его основе;

Шееле – в своей аптекарской лаборатории выделил кислоты: щавелевую, лимонную, яблочную и другие, дал им названия.

Дем онстрирую разнообразные органические вещества: органические кислоты (твердые и жидкие) – лимонную С 6 Н 8 О 7 , стеариновую С 17 Н 35 СООН, олеиновую С 17 Н 33 СООН, уксусную СH 3 COOH, аминоуксусную NН 2 СН 2 СООН, сахар С 12 Н 22 О 11 , этиловый спирт (в спиртовке) С 2 Н 5 ОН, парафиновую свечу и нефть, в состав которых входят вещества с общей формулой СхНу, бумагу, состоящую из целлюлозы (С 6 Н 10 О 5 )n.

Все это органические вещества.

  • Что общего у всех органических веществ?

Учащиеся: В состав всех органических веществ входит химический элемент углерод.

  • Дайте определение предмету органическая химия.

Учащиеся: Органическая химия – это химия соединений углерода

  • Какие еще элементы находятся в составе органических веществ?

Учащиеся: Помимо углерода в состав входит элемент водород. Могут еще входить О, S, N и другие элементы.

  • Какое химическое свойство вы можете предположить для органических веществ?

Учащиеся: Во все перечисленные соединения входит углерод и водород. Они горят

Все органические вещества горят.

Демонстрирую горение спиртовки ( C 2 H 5 OH ), обращает внимание на характер пламени, вносит последовательно в пламя спиртовки и свечи фарфоровую чашку, показывает, что от пламени свечи образуется копоть. (спиртовое пламя бледное, бесцветное, у свечи – яркое, светящееся)

  • какие вещества образуются в ходе горения органических веществ на примере парафина?

Учащиеся : образоваться может углекислый или угарный газ, чистый углерод ( сажа, копоть ).

Индивидуальная работа у доски

C х H у + O 2 = CO 2 + H 2 O

При горении органических веществ образуются углекислый газ и вода

  • Как подтвердить, наличие продуктов окисления: воды и углекислого газа?

! Обсуждаем технику безопасности при работе со спиртовкой

Пропустить углекислый газ через известковую воду, она помутнеет.

Выполнение лабораторного опыта в группах по четыре человека: пробирку с парафином и оксидом меди (II) нагревают, через газоотводную трубку пропускают углекислый газ в известковую воду, наблюдают помутнение из-за образовавшегося карбоната кальция.

CO 2 + Ca(OH) 2 = CaCO 3 + H 2 O

Не все органические вещества способны гореть, но все они разлагаются при нагревании без доступа кислорода, обугливаются.

Демонстрирую обугливание сахара при нагревании

Приведите примеры из жизни, когда происходит разложение органических веществ, т.е. их обугливание. Например, что происходит с продуктами, содержащими крахмал, белок?

Учащиеся: Образуется уголь. Если пережарить картошку, оладьи, блины, хлеб, происходит обугливание крахмала, входящего в состав картофеля и муки. При подгорании яиц или мяса обугливается белок, содержащийся в этих продуктах.

  • Ребята, определите вид химической связи в органических веществах, исходя из их состава.

Учащиеся: (смотрит на формулы органических веществ, написанные на доске). В органических веществах ковалентная полярная связь.

  • Что произойдет, если на раскаленную сковороду положить поваренную соль, сахар?

Учащиеся: Сахар начнет плавиться, а поваренная соль останется без изменений.

  • Как вы думаете, почему поваренная соль и сахар ведут себя по-разному при нагревании?

Учащиеся: Данные вещества имеют разное строение кристаллических решеток.

  • Какая кристаллическая решетка у поваренной соли и у сахара?

Учащиеся. В поваренной соли NaCl – ионная кристаллическая решетка, а в сахаре – молекулярная.

  • Чем отличаются вещества с молекулярной и ионной кристаллическими решетками?

Учащиеся. Вещества с ионными кристаллическими решетками имеют более высокие температуры кипения и плавления, чем вещества с молекулярными решетками.

  • И мы с вами это можем наблюдать при плавлении сахара на раскаленной сковороде. Ребята, давайте запишем признаки органических веществ.

Итак, запишем признаки (особенности) органических веществ.

Далее ученики в тетрадях записывают признаки органических веществ:

  1. Содержат углерод.
  2. Горят и (или) разлагаются с образованием углеродсодержащих продуктов.
  3. Связи в молекулах органических веществ ковалентные.
  4. Кристаллическая решетка молекулярная.

Изучение органических веществ в XIX веке столкнулось с рядом затруднений. Одно из них – «непонятная» степень окисления углерода.

  • Определите степень окисления углерода в соединениях: СН 4 – метан, С 2 Н 4 – этилен, С 2 Н 2 – ацетилен, пропан -С 3 Н 8

Устно рассчитывают степени окисления элементов. Испытывают затруднения. В метане С 2 H 4 степень окисления – IV, в этилене С 2 Н 4 , в ацетилене С 2 Н 2 , в пропане С 3 Н 8 соответственно II, I и 8/3.

Полученные степени окисления маловероятны. Значит, к органическим веществам нельзя применять методы неорганической химии.

Вместо понятия степени окисления в органической химии применяют понятие валентность.

Валентность – способность атомов образовывать определенное количество ковалентных связей.

Так , в молекуле водорода Н 2 образуется одна ковалентная химическая связь Н-Н, т.е водород одновалентен.

Азот в аммиаке трехвалентен NH 3 или N – H

Сера в сероводороде и кислород в воде двухваленты:

H 2 S или H-S-H, H 2 O или H-O-H

Рассмотрим строение атома углерода.

  1. Рассматривают электронную конфигурацию атома углерода, графическое изображение валентных электронов, переход атома в возбужденное состояние, наличие у атома углерода 4-х неспаренных электронов.( валентность углерода в органических соединениях всегда IV, (атомы углерода соединяются между собой в углеродные цепочки)

Особенности строения органических веществ: (основные положения Бутлерова А.М.)

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности
  2. Свойства веществ зависят не только от состава их молекул, но и от их строения..

Задание . Используя шаростержневые модели п остарайтесь построить структурные формулы СН 4 , С 2 Н 6 , С 2 Н 2 , С 3 Н 8 , С 4 Н 10 . Чёрные шарики – атомы углерода, белые шарики – атомы водорода.

  • Как вы думаете, сколько органических соединений сейчас известно? (Учащиеся называют предполагаемое количество известных органических веществ. Обычно эти числа занижены по сравнению с фактической численностью органических веществ). В 1999 году зарегистрировано 18-миллионное органическое вещество.
  • В чем же причины многообразия органических веществ?

Учащиеся : такие причины, как: соединение углерода в цепи разной длины; соединение атомов углерода простыми, двойными и тройными связями с другими атомами и между собой; множество элементов, входящих в состав органических веществ.

еще одна причина – разный характер углеродных цепей: линейные, разветвленные и циклические, демонстрирует модели бутана, изобутана и циклогексана.

Учащиеся в тетради записывают: Причины многообразия органических соединений.

1. Соединиение атомов углерода в цепи разной длины.
2. Образование атомами углерода простых, двойных и тройных связей с другими атомами и между собой.
3. Разный характер углеродных цепочек: линейные, разветвленные, циклические.
4. Множество элементов, входящих в состав органических веществ.
5. Явление изомерии органических соединений.

  • Что же такое изомерия?

Это было известно с 1823 года. Берцелиус (1830 год) предложил назвать изомерами вещества, имеющие качественный и количественный состав, но обладающие различными свойствами. К примеру, было известно около 80 разнообразных веществ, отвечающих составу C 6 H 12 O 2 . В 1861 году загадка изомерии была разгадана.

Определения понятий “химическое строение”, “изомеры” и “изомерия” записываются в тетрадь.

Вещества, имеющие одинаковый состав и одинаковую молекулярную массу но различное строение молекул, а поэтому обладающие разными свойствами называются изомерами.

Состав органического вещества – С 2 Н 6 О.

Умение строить структурные формулы изомеров отрабатываются на примерах:

C 2 H 6 O (этанол и диметиловый эфир), C 4 H 10 (бутан и изобутан). Учитель показывает, как можно записать краткую структурную формулу

  • А каково же значение органических веществ?

Для того, чтобы оценить роль органической химии в нашей жизни, представьте, что станет с нашей жизнью, если из нее исчезнут изделия из дерева, пластмассы, ткани, встанет транспорт из-за отсутствия топлива, исчезнут лекарства, одежда, пища, ну, и мы с вами тоже, поскольку состоим из органических соединений.

  • Только ли положительное значение имеют органические вещества в жизни общества?

V. Закрепление (13-15 мин)

Ребята, сегодня мы пытались найти ответы на многие вопросы, которые касаются органических соединений и органической химии. Подведем итог.

  • Что же изучает органическая химия?
  • Какие химические вещества называются органическими.
  • В чем состоит особенность органических соединений?
  • Какова валентность углерода в органических соединениях?
  • Какова его степень окисления?
  • Какое химическое свойство является общим для органических соединений?

Задание на карточках.

Составьте структурные формулы неорганических и органических веществ.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: